八年級(jí)數(shù)學(xué)教案范文錦集5篇
作為一名人民教師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么教案應(yīng)該怎么寫才合適呢?下面是小編整理的八年級(jí)數(shù)學(xué)教案5篇,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)教案 篇1
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的`學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過(guò)程是一個(gè)由特殊到一般的認(rèn)識(shí)過(guò)程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來(lái)看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問(wèn)題,那就是符號(hào)問(wèn)題,這方面還有待加強(qiáng)。
教學(xué)目標(biāo)
1、知識(shí)與技能:
掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。
2、過(guò)程與方法:
。1)通過(guò)同底數(shù)冪乘法性質(zhì)的推導(dǎo)過(guò)程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;
。2)通過(guò)性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問(wèn)題的經(jīng)驗(yàn)。
3、情感態(tài)度與價(jià)值觀:
。1)通過(guò)引例問(wèn)題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過(guò)性質(zhì)的推導(dǎo)體會(huì)“特殊。
八年級(jí)數(shù)學(xué)教案 篇2
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?
通過(guò)討論得到矩形的判定方法.
矩形判定方法1:對(duì)角錢相等的`平行四邊形是矩形.
矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.
。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)
二、例習(xí)題分析
例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?
(1)有一個(gè)角是直角的四邊形是矩形;(×)
(2)有四個(gè)角是直角的四邊形是矩形;(√)
(3)四個(gè)角都相等的四邊形是矩形;(√)
。4)對(duì)角線相等的四邊形是矩形;(×)
。5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)
。6)對(duì)角線互相平分且相等的四邊形是矩形;(√)
。7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)
(8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)
。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)
指出:
。╨)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;
。2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明
八年級(jí)數(shù)學(xué)教案 篇3
教學(xué)目標(biāo)
一、教學(xué)知識(shí)點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過(guò)具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價(jià)值觀要求
1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫圖等過(guò)程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).
2.通過(guò)學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問(wèn)題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過(guò)程:
一.巧設(shè)情景問(wèn)題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車方向盤的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動(dòng)呢?
1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.
2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).
3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動(dòng)過(guò)程中,同樣它的形狀、大小沒有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的'轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來(lái)探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁(yè))答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長(zhǎng)短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過(guò)程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長(zhǎng)度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過(guò)旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁(yè)例1)
。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過(guò)的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁(yè))
書上68頁(yè)做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時(shí)小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動(dòng)與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過(guò)程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過(guò)剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的?
過(guò)程:同樣讓學(xué)生在畫圖過(guò)程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的.
整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計(jì):略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級(jí)數(shù)學(xué)教案 篇4
課題:三角形全等的判定(三)
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;
(3)會(huì)添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;
(2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過(guò)程:
1、新課引入
投影顯示
問(wèn)題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。
2、公理的獲得
問(wèn):通過(guò)上面問(wèn)題的分析,滿足什么條件的兩個(gè)三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)
公理:有三邊對(duì)應(yīng)相等的`兩個(gè)三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說(shuō)明:
(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。
(5)說(shuō)明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。
例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架
求證:AD⊥BC
分析:(設(shè)問(wèn)程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1=
只要證什么?(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
八年級(jí)數(shù)學(xué)教案 篇5
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過(guò)程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問(wèn)題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過(guò)程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的`垂直 平分線.
4.如圖,在紙上再任畫一點(diǎn)B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說(shuō)明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)的數(shù)學(xué)教案15篇12-14
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01