天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-04-27 09:59:30 八年級(jí)數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)教案模板集錦7篇

  作為一位無(wú)私奉獻(xiàn)的人民教師,通常會(huì)被要求編寫(xiě)教案,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家整理的八年級(jí)數(shù)學(xué)教案7篇,歡迎閱讀,希望大家能夠喜歡。

八年級(jí)數(shù)學(xué)教案模板集錦7篇

八年級(jí)數(shù)學(xué)教案 篇1

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.

  問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?

  解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時(shí)~14時(shí)的'氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類(lèi)似的數(shù)量關(guān)系呢?

  二、探究歸納

  問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.

  解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).

  問(wèn)題3收音機(jī)刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長(zhǎng)l越大,頻率f就________.

  解(1)l與f的乘積是一個(gè)定值,即

  lf=300000,

  或者說(shuō).

  (2)波長(zhǎng)l越大,頻率f就 越小 .

  問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿(mǎn)足下列關(guān)系:S=_________.

  利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫(huà)了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫(huà)氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴(lài),密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值

八年級(jí)數(shù)學(xué)教案 篇2

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫(huà)出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線(xiàn),畫(huà)一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫(huà)出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線(xiàn)?

  (正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線(xiàn)).

  3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象.我們畫(huà)一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫(huà)函數(shù)的圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線(xiàn)與y軸與x軸的交點(diǎn).

  2.求直線(xiàn)y=-2x-3與x軸和y軸的交點(diǎn),并畫(huà)出這條直線(xiàn).

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線(xiàn)與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線(xiàn)與y軸的.交點(diǎn).

  過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線(xiàn)就是直線(xiàn)y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線(xiàn)y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

  三、實(shí)踐應(yīng)用

  例1若直線(xiàn)y=-kx+b與直線(xiàn)y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線(xiàn)的表達(dá)式.

  分析直線(xiàn)y=-kx+b與直線(xiàn)y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

  解因?yàn)橹本(xiàn)y=-kx+b與直線(xiàn)y=-x平行,所以k=-1,又因?yàn)橹本(xiàn)與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線(xiàn)的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線(xiàn)與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級(jí)數(shù)學(xué)教案 篇3

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握反比例函數(shù)的概念

  2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式

  3.能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想

  二、重、難點(diǎn)

  1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫(xiě)出函數(shù)解析式

  2.難點(diǎn):理解反比例函數(shù)的概念

  3.難點(diǎn)的突破方法:

  (1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解

 。2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。

 。3)(k≠0)還可以寫(xiě)成(k≠0)或xy=k(k≠0)的形式

  三、例題的意圖分析

  教材第46頁(yè)的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問(wèn)題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過(guò)觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。

  教材第47頁(yè)的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。

  補(bǔ)充例1、例2都是常見(jiàn)的'題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問(wèn)題的能力。

  四、課堂引入

  1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?

  2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?

  五、例習(xí)題分析

  例1.見(jiàn)教材P47

  分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

  例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)

 。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫(xiě)成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫(xiě)后是,分子不是常數(shù),只有(2)、(3)、(5)能寫(xiě)成定義的形式

  例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?

  分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫(xiě)法中x的次數(shù)是-1,因此m的取值必須滿(mǎn)足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤

八年級(jí)數(shù)學(xué)教案 篇4

  一、教學(xué)目的

  1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象.

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.

  2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.

  難點(diǎn):在畫(huà)圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?

  3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:

  新課

  1.畫(huà)函數(shù)圖象的方法是描點(diǎn)法.其步驟:

  (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的'幾個(gè)關(guān)鍵點(diǎn).比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).

  (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).

  (3)用光滑曲線(xiàn)連線(xiàn).根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線(xiàn).

  一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(xiàn)(或直線(xiàn)).

  2.講解畫(huà)函數(shù)圖象的三個(gè)步驟和例.畫(huà)出函數(shù)y=x+0.5的圖象.

  小結(jié)

  本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖.

  練習(xí)

 、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線(xiàn))

  ②補(bǔ)充題:畫(huà)出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習(xí)題.

  四、教學(xué)注意問(wèn)題

  1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.

  2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性.

  3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.

八年級(jí)數(shù)學(xué)教案 篇5

  教材分析

  本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的'知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。

  學(xué)情分析

  本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過(guò)程是一個(gè)由特殊到一般的認(rèn)識(shí)過(guò)程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。

  從學(xué)生做練習(xí)和作業(yè)來(lái)看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問(wèn)題,那就是符號(hào)問(wèn)題,這方面還有待加強(qiáng)。

  教學(xué)目標(biāo)

  1、知識(shí)與技能:

  掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。

  2、過(guò)程與方法:

 。1)通過(guò)同底數(shù)冪乘法性質(zhì)的推導(dǎo)過(guò)程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;

 。2)通過(guò)性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問(wèn)題的經(jīng)驗(yàn)。

  3、情感態(tài)度與價(jià)值觀:

  (1)通過(guò)引例問(wèn)題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;

 。2)通過(guò)性質(zhì)的推導(dǎo)體會(huì)“特殊。

八年級(jí)數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.

  2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.

  3.難點(diǎn)的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

 、埔李}意畫(huà)出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

 、纫?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

 、伞螾RS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).

  例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);

  ⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;

 、歉鶕(jù)勾股定理的.逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí).

八年級(jí)數(shù)學(xué)教案 篇7

  一、學(xué)生起點(diǎn)分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線(xiàn)平行,有什么樣的結(jié)論?

  反之,滿(mǎn)足什么條件的兩直線(xiàn)是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中

  可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

  ● 知識(shí)與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過(guò)程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;

  (2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;

  (3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過(guò)程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長(zhǎng)度之間滿(mǎn)足什么樣的關(guān)系?

  2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

  意圖:

  通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:

  1.這三組數(shù)都滿(mǎn)足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

  意圖:

  通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿(mǎn)足 ,可以構(gòu)成直角三角形;②7,24,25滿(mǎn)足 ,可以構(gòu)成直角三角形;③8,15,17滿(mǎn)足 ,可以構(gòu)成直角三角形。

  從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形

  內(nèi)容2:說(shuō)理

  提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的.理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形

  滿(mǎn)足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。

  注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。

  活動(dòng)3:反思總結(jié)

  提問(wèn):

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

  4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?

  意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。

 、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用

  效果

  每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫(huà)出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。

  效果:

  學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。

  效果:

  學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿(mǎn)足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

  意圖:

  鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。

  效果:

  學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。

  4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

  5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書(shū)設(shè)計(jì)

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)的數(shù)學(xué)教案15篇12-14

【推薦】八年級(jí)數(shù)學(xué)教案12-05

【薦】八年級(jí)數(shù)學(xué)教案12-03

八年級(jí)數(shù)學(xué)教案【薦】12-06

八年級(jí)數(shù)學(xué)教案【熱門(mén)】12-03

八年級(jí)數(shù)學(xué)教案【推薦】12-04

【精】八年級(jí)數(shù)學(xué)教案12-04