關(guān)于八年級數(shù)學(xué)教案范文錦集8篇
作為一名人民教師,就不得不需要編寫教案,教案有助于順利而有效地開展教學(xué)活動。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數(shù)學(xué)教案8篇,僅供參考,歡迎大家閱讀。
八年級數(shù)學(xué)教案 篇1
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進(jìn)行檢測。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
。1)請你算一算它們的平均數(shù)和極差。
(2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來探索這個問題。
探索活動
通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時
。4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導(dǎo):以3個數(shù)為例
。ǘ(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.
注意:波動大小指的`是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
八年級數(shù)學(xué)教案 篇2
一、學(xué)生起點分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學(xué)目標(biāo):
● 知識與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實驗到驗證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實驗猜想歸納論證
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學(xué)結(jié)論已有一定的體驗
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的`關(guān)系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實驗很容易得出如下結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數(shù),稱為勾股數(shù)。
注意事項:為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。
活動3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用
效果
每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形( ),以便于計算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問題。
效果:
學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形, 便于計算。
意圖:
鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實驗活動,從中體驗任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識解決實際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。
4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
八年級數(shù)學(xué)教案 篇3
課題:一元二次方程實數(shù)根錯例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
【典型例題】
例1 下列方程中兩實數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠蹋豢赡苡袃蓚實根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的'整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。
。1)求k的取值范圍;
。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。
。2)存在。
如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。
∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。
。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?
解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=
。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。
又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。
1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。
2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。
求證:關(guān)于x的方程
(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數(shù)學(xué)教案 篇4
知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會用變化的量描述事物
情感目標(biāo):回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學(xué)媒體:多媒體電腦,計算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
、 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達(dá)式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的`每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學(xué)教案 篇5
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
二、重點、難點
1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題.
3.難點的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
、埔李}意畫出圖形;
、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
、伞螾RS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的.長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
、圃O(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.
八年級數(shù)學(xué)教案 篇6
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計算,進(jìn)一步培養(yǎng)學(xué)生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗.
重點
等腰梯形的性質(zhì)及其應(yīng)用.
難點
解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線),及梯形有關(guān)知識的應(yīng)用.
教學(xué)流程安排
活動流程圖
活動的內(nèi)容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學(xué)過程設(shè)計
問題與情景
師生行為
設(shè)計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現(xiàn)實中實際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點,培養(yǎng)學(xué)生的觀察、概括能力.
[活動2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.
問題與情景
師生行為
設(shè)計意圖
一些基本概念
。1)(如圖):底、腰、高.
。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
。3)直角梯形:有一個角是直角的梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對梯形有一定的感性認(rèn)識,因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強調(diào):①梯形與四邊形的關(guān)系;
、谏稀⑾碌椎母拍钍怯傻椎拈L短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
。1)怎樣畫才能得到一個梯形?
。2)在哪些三角形中,能夠得到一個等腰梯形?
在學(xué)生獨立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動,指導(dǎo)、傾聽學(xué)生交流.針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動教師應(yīng)重點關(guān)注:
。1)學(xué)生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
。3)學(xué)生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設(shè)計了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎(chǔ).
問題與情景
師生行為
設(shè)計意圖
[活動4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
。1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;
。2)這個等腰梯形的兩條對角線的長度有什么關(guān)系?
學(xué)生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結(jié)論.
針對不同認(rèn)識水平的學(xué)生,教師指導(dǎo)學(xué)生活動.
師生共同歸納:
、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.
、诘妊菪蝺裳嗟龋
、鄣妊菪瓮坏咨系膬蓚角相等.
、艿妊菪蔚.兩條對角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機會,給學(xué)生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質(zhì)的直接運用,請學(xué)生分析、解答,教師聆聽,同時注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設(shè)法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對于學(xué)好梯形內(nèi)容很有幫助.
問題與情景
師生行為
設(shè)計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學(xué)或練習(xí)中可以根據(jù)學(xué)生的實際情況,再引導(dǎo)、補充其他輔助線的添加方法,讓學(xué)生多了解、多見識.
[活動6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
(2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
。3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問題常用的方法:
(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
。2)“作高”:使兩腰在兩個直角三角形中(圖2);
。3)“延腰”:構(gòu)造具有公共角的兩個等腰三角形(圖3);
。4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
。5)“等積變形”,連結(jié)梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個交流的過程.
梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.
八年級數(shù)學(xué)教案 篇7
一、知識與技能
1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過程與方法
1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點.
2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.
三、情感態(tài)度與價值觀
1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2、通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.
教學(xué)重點:理解和領(lǐng)會反比例函數(shù)的概念.
教學(xué)難點:領(lǐng)悟反比例的概念.
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動1
問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問學(xué)生,師生互動.
在此活動中老師應(yīng)重點關(guān)注學(xué)生:
、倌芊穹e極主動地合作交流.
②能否用語言說明兩個變量間的關(guān)系.
、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1)
。唬2)
。唬3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的.函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有
的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動2
下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;
(2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;
(3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨立思考,在進(jìn)行全班交流.
教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點關(guān)注學(xué)生:
(1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;
(2)能否積極主動地參與小組活動;
(3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.
分析及解答:(1)
。唬2)
。唬3)
概念:如果兩個變量x,y之間的關(guān)系可以表示成
的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動3
做一做:
一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點關(guān)注:
、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否順利抽象反比例函數(shù)的模型;
、蹖W(xué)生能否積極主動地合作、交流;
活動4
問題1:下列哪個等式中的y是x的反比例函數(shù)?
問題2:已知y是x的反比例函數(shù),當(dāng)x=2時,y=6
(1)寫出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時,y的值.
師生行為:
學(xué)生獨立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點關(guān)注:
、賹W(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否積極主動地參與小組活動.
分析及解答:
1、只有xy=123是反比例函數(shù).
2、分析:因為y是x的反比例函數(shù),所以
,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè)
,因為x=2時,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
三、鞏固提高
活動5
1、已知y是x的反比例函數(shù),并且當(dāng)x=3時,y=8.
。1)寫出y與x之間的函數(shù)關(guān)系式.
(2)求y=2時x的值.
2、y是x的反比例函數(shù),下表給出了x與y的一些值:
(1)寫出這個反比例函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨立練習(xí),而后再與同桌交流,上講臺演示,教師要重點關(guān)注“學(xué)困生”.
四、課時小結(jié)
反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識到理發(fā)認(rèn)識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實際現(xiàn)象.
八年級數(shù)學(xué)教案 篇8
一、教學(xué)目標(biāo)
(一)、知識與技能:
。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
(二)、過程與方法:
。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
。ㄈ、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。
二、教學(xué)重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過程
教學(xué)環(huán)節(jié):
活動1:復(fù)習(xí)引入
看誰算得快:用簡便方法計算:
。1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
設(shè)計意圖:
如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進(jìn)行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的`難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導(dǎo)入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設(shè)計意圖:
引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動3:探究新知
看誰算得準(zhǔn):
計算下列式子:
。1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
。3)2-16= ;
。4)a3-a= ;
。5)2-6+9= 。
在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級數(shù)學(xué)教案【薦】12-06
【薦】八年級數(shù)學(xué)教案12-03
【熱】八年級數(shù)學(xué)教案12-07
人教版八年級數(shù)學(xué)教案11-04