天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-09-09 02:30:33 八年級(jí)數(shù)學(xué)教案 我要投稿

精選八年級(jí)數(shù)學(xué)教案范文8篇

  作為一名教學(xué)工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,借助教案可以有效提升自己的教學(xué)能力。我們?cè)撛趺慈懡贪改兀肯旅媸切【幨占淼陌四昙?jí)數(shù)學(xué)教案8篇,歡迎大家分享。

精選八年級(jí)數(shù)學(xué)教案范文8篇

八年級(jí)數(shù)學(xué)教案 篇1

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

  (一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

  (正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).

  3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

  2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

  過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的`交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

  三、實(shí)踐應(yīng)用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

  解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級(jí)數(shù)學(xué)教案 篇2

  知識(shí)技能

  1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。

  2.探究線段垂直平分線的性質(zhì)。

  過程方法

  1.經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。

  2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。

  情感態(tài)度價(jià)值觀通過對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問題的能力。

  教學(xué)重點(diǎn)

  1.軸對(duì)稱的性質(zhì)。

  2.線段垂直平分線的性質(zhì)。

  教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。

  教學(xué)方法和手段多媒體教學(xué)

  過程教學(xué)內(nèi)容

  引入中垂線概念

  引出圖形對(duì)稱的性質(zhì)第一張幻燈片

  上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對(duì)稱的`性質(zhì)。

  幻燈片二

  1、圖中的對(duì)稱點(diǎn)有哪些?

  2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?

  理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。

  我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

  定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

八年級(jí)數(shù)學(xué)教案 篇3

  教學(xué)指導(dǎo)思想與理論依據(jù)

  《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具! 教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

  教學(xué)內(nèi)容分析:

  本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

  學(xué)生情況分析:

  本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過程。

  教學(xué)方式與教學(xué)手段說明:

  本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的`機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長、角度、對(duì)角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。

  知識(shí)與技能:

  1、初步理解特殊四邊形性質(zhì);

  2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

  過程與方法:

  1、了解特殊四邊形性質(zhì)的形成過程;

  2、初步了解探究新知識(shí)的一些方法;

  情感與價(jià)值觀:

  1、了解特殊四邊形在日常生活中的應(yīng)用;

  2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;

  3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

  教學(xué)環(huán)境:

  多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室

  教學(xué)課型:

  試驗(yàn)探究式

  教學(xué)重點(diǎn):

  特殊四邊形性質(zhì)

  教學(xué)難點(diǎn):

  特殊四邊形性質(zhì)的發(fā)現(xiàn)

  一、設(shè)置情景,提出問題

  提出問題:

  知識(shí)已生活,又服務(wù)于生活。我們經(jīng)過校門時(shí),是否注意到電動(dòng)門的機(jī)械工作原理(教師用幾何畫板演示)?

  1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?

  2、在開(關(guān))門過程中這些四邊形是如何變化的?

  3、你還發(fā)現(xiàn)了什么?

  解決問題:

  學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

  當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問題就容易解決了。

 。ㄒ鈭D:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)

  二、整體了解,形成系統(tǒng)

  本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

  提出問題:

  1、本章主要研究哪些特殊四邊形?

  2、從哪幾方面研究這些特殊四邊形?

  3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒有,為什么?

  解決問題:

  學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。

  1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

  2、從邊、角、對(duì)角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對(duì)角線三方面考慮;

  3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。

 。ㄒ鈭D: 學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))

  三、個(gè)體研究、總結(jié)性質(zhì)

  1、平行四邊形性質(zhì)

  提出問題:

  在平行四邊形的形狀、位置、大小變化過程中,請(qǐng)觀察數(shù)據(jù)并找出邊長、角度、對(duì)角線長度相對(duì)不變的性質(zhì)。

  解決問題:

  教師引導(dǎo)學(xué)生拖動(dòng)B點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。

  在圖形變化過程中,

 。1)對(duì)邊相等;

 。2)對(duì)角相等;

 。3)通過AO=CO 、BO=DO,可得對(duì)角線互相平分;

  (4)通過鄰角互補(bǔ),可得對(duì)邊平行;

 。5)內(nèi)外角和都等于360度;

 。6)鄰角互補(bǔ);

  ……

  指導(dǎo)學(xué)生填表:

  平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)

  菱形性質(zhì)

  梯形性質(zhì)等腰梯形性質(zhì)

  直角梯形性質(zhì)

  (既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)

  按照平行四邊形性質(zhì)的探索思路,分別研究:

  2、矩形性質(zhì);

  3、菱形性質(zhì);

  4、正方形性質(zhì);

  5、梯形性質(zhì);

  6、等腰梯形性質(zhì);

  7、直角梯形的性質(zhì)。

 。ㄒ鈭D: 學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂趣。)

  教師總結(jié):

 。ㄒ鈭D: 掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)

  四、聯(lián)系生活,解決問題

  解決問題:

  學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。

  學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對(duì)角線長度的變化引起四邊形的形狀、大小、位置的變化。

  四邊形具有不穩(wěn)定性,而三角形沒有這個(gè)特點(diǎn)……

 。ㄒ鈭D:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力,體會(huì)成功后的喜悅。)

  五、小結(jié)

  1.研究問題從整體到局部的方法;

  2.主要從邊長、角度、對(duì)角線長度三方面研究特殊四邊形性質(zhì)。

  六、作業(yè)

  1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

  2.觀察實(shí)際生活中的電動(dòng)門,在開(關(guān))門過程中特殊四邊形的變化。

  學(xué)習(xí)效果評(píng)價(jià)

  針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:

  利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。

  在問題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。

  學(xué)生演示開(關(guān))門過程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識(shí)解釋實(shí)際問題,使自身價(jià)值得以實(shí)現(xiàn)并體會(huì)成功后的喜悅;

  由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。

八年級(jí)數(shù)學(xué)教案 篇4

  教學(xué)目標(biāo):

  1、 理解運(yùn)用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過程中,我設(shè)計(jì)了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

  2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫出分解過程,若不能,說出為什么?

 、-x2+y2 ②-x2-y2 ③4-9x2

 、 (x+y)2-(x-y)2 ⑤ a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

  生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

  生5: a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)

  師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的.條件,我設(shè)計(jì)了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問題:

  (1) 我在備課時(shí),過高估計(jì)了學(xué)生的能力,問題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問題2改為:

  下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

  (2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計(jì)時(shí)可寫一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問題后再強(qiáng)調(diào)、歸納,效果也可能會(huì)更好。

  我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們?cè)僮鰩最}試試。”生又開始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥恚院笊险n不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

  確實(shí),“學(xué)海無涯,教海無邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問題,“沒有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……

八年級(jí)數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

  2.使學(xué)生能夠求出分式有意義的條件;

  3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

  4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

  2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的理解.

  三、教學(xué)過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個(gè)因式的積的.問題,但若有如下問題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問,這是不是整式?請(qǐng)一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學(xué)生舉幾個(gè)分式的例子.

  (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

 、俜帜钢泻凶帜.

 、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

  (4)問:何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

  2.有理式的分類

  請(qǐng)學(xué)生類比有理數(shù)的分類為有理式分類:

  例1 當(dāng)取何值時(shí),下列分式有意義?

  (1);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (2);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

  (4).

  解:由分母得.

  ∴當(dāng)且時(shí),原分式有意義.

  思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無意義?”該怎樣做?

  例2 當(dāng)取何值時(shí),下列分式的值為零?

  (1);

  解:由分子得.

  而當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當(dāng)時(shí),分母,分式無意義.

  當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  (3);

  解:由分子得.

  而當(dāng)時(shí),分母.

  當(dāng)時(shí),分母.

  ∴當(dāng)或時(shí),原分式值都為零.

  (4).

  解:由分子得.

  而當(dāng)時(shí),,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴(kuò)展

  1.分式與分?jǐn)?shù)的區(qū)別.

  2.分式何時(shí)有意義?

  3.分式何時(shí)值為零?

  (五)隨堂練習(xí)

  1.填空題:

  (1)當(dāng)時(shí),分式的值為零

  (2)當(dāng)時(shí),分式的值為零

  (3)當(dāng)時(shí),分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設(shè)計(jì)

  課題 例1

  1.定義例2

  2.有理式分類

八年級(jí)數(shù)學(xué)教案 篇6

  一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的.一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

  根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

  通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

  通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

  (二)重點(diǎn)、難點(diǎn)

  一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。

  (三)教學(xué)目標(biāo)

  1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。

八年級(jí)數(shù)學(xué)教案 篇7

  總課時(shí):7課時(shí) 使用人:

  備課時(shí)間:第八周 上課時(shí)間:第十周

  第4課時(shí):5、2平面直角坐標(biāo)系(2)

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;

  2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  過程與方法

  1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;

  2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。

  情感態(tài)度與價(jià)值觀

  通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)過程

  第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))

  在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的.點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。

  練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)

  由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學(xué)生操作完畢后)

  2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?

  (出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個(gè)圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。

  (學(xué)生描點(diǎn)、畫圖)

  (拿出一位做對(duì)的學(xué)生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)

  (補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)

  2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。

  先獨(dú)立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)

  本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。

  第五環(huán)節(jié) 布置作業(yè)

  習(xí)題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級(jí)數(shù)學(xué)教案 篇8

  復(fù)習(xí)第一步::

  勾股定理的有關(guān)計(jì)算

  例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.

  析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

  勾股定理解實(shí)際問題

  例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.

  析解:彩旗自然下垂的長度就是矩形DCEF

  的對(duì)角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm

  與展開圖有關(guān)的計(jì)算

  例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.

  析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的.一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.

  在矩形ACC’A’中,因?yàn)锳C=2,CC’=1

  所以由勾股定理得AC’=.

  ∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為

  復(fù)習(xí)第二步:

  1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.

  例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

  錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.

  正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2

  例5:已知一個(gè)Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

  錯(cuò)解:因?yàn)镽t△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

  剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

  正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時(shí),第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

  溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒有確定時(shí),應(yīng)進(jìn)行分類討論.

  例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

  錯(cuò)解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

初中八年級(jí)數(shù)學(xué)教案11-03

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

人教版八年級(jí)數(shù)學(xué)教案11-04

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)數(shù)學(xué)教案【薦】12-06

八年級(jí)數(shù)學(xué)教案【推薦】12-04

【推薦】八年級(jí)數(shù)學(xué)教案12-05

【精】八年級(jí)數(shù)學(xué)教案12-04