關(guān)于八年級數(shù)學教案模板集錦9篇
作為一名老師,通常需要用到教案來輔助教學,借助教案可以讓教學工作更科學化。寫教案需要注意哪些格式呢?下面是小編為大家整理的八年級數(shù)學教案9篇,歡迎大家分享。
八年級數(shù)學教案 篇1
活動一、創(chuàng)設情境
引入:首先我們來看幾道練習題(幻燈片)
。◤土暎浩叫芯及三角形全等的知識)
下面我們一起來欣賞一組圖片(幻燈片)
[學生活動]觀看后答問題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)
[學生活動]小組合作交流,拼出圖案的類型。
同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動二、合作交流,探求新知
問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學生活動]認真觀察、討論、思考、推理。
鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。
學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。
并說明:平行四邊形不相鄰的`兩個頂點連成的線段叫它的對角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?
[學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對邊相等
平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)
你能演示你的結(jié)論是如何得到的嗎?(學生演示)
你能證明嗎?(幻燈片出示證明題)
[學生活動]先分析思路尤其是輔助線,請學生上黑板證明。
自己完成性質(zhì)2的證明。
活動三、運用新知
性質(zhì)掌握了嗎?一起來看一道題目:
嘗試練習(幻燈片)例1
[學生活動]作嘗試性解答。
八年級數(shù)學教案 篇2
1.展示生活中一些平行四邊形的實際應用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應用了平行四邊形的什么性質(zhì)?
2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點,觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)
3.再次演示平行四邊形的移動過程,當移動到一個角是直角時停止,讓學生觀察這是什么圖形?(小學學過的長方形)引出本課題及矩形定義.
矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).
矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.
【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上(作出對角線),拉動一對不相鄰的頂點,改變平行四邊形的形狀.
、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?
、诋敗夕潦侵苯菚r,平行四邊形變成矩形,此時它的其他內(nèi)角是什么樣的角?它的'兩條對角線的長度有什么關(guān)系?
操作,思考、交流、歸納后得到矩形的性質(zhì).
矩形性質(zhì)1 矩形的四個角都是直角.
矩形性質(zhì)2 矩形的對角線相等.
如圖,在矩形ABCD中,AC、BD相交于點O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.
例習題分析
例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=4cm,求矩形對角線的長.
分析:因為矩形是特殊的平行四邊形,所以它具有對角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.
解:∵ 四邊形ABCD是矩形,
∴ AC與BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等邊三角形.
∴矩形的對角線長AC=BD=2OA=2×4=8(cm).
例2(補充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點A到BD的距離AE的長.
分析:(1)因為矩形四個角都是直角,因此矩形中的計算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計算,這是幾何計算題中常用的方法
八年級數(shù)學教案 篇3
教學目標
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學習數(shù)學的興趣.
(2)在解決實際問題的.過程中,體驗數(shù)學學習的實用性.
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.
學生匯總了四種方案:
。ǎ保 (2) (3)(4)
學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.
學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.
如圖:
(1)中A→B的路線長為:AA’+d;
。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線長為:AO+OB>AB;
。ǎ矗┲蠥→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務嗎?
。2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
內(nèi)容:
作業(yè):1.課本習題1.5第1,2,3題.
要求:A組(學優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設計:
教學反思:
八年級數(shù)學教案 篇4
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的`平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案 篇5
一、素質(zhì)教育目標
(一)知識教學點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應用.
2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的.條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.
(二)能力訓練點
1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.
2.通過教學,使學生逐步學會分別從題設或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.
(三)德育滲透點
通過一題多解激發(fā)學生的學習興趣.
(四)美育滲透點
通過學習,體會幾何證明的方法美.
二、學法引導
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學重點:平行四邊形的判定定理1、2、3的應用.
2.教學難點:綜合應用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
八年級數(shù)學教案 篇6
一、學生起點分析
通過前一章《勾股定理》的學習,學生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學任務分析
《數(shù)不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).
本節(jié)課的教學目標是:
、偻ㄟ^拼圖活動,讓學生感受客觀世界中無理數(shù)的存在;
、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);
③學生親自動手做拼圖活動,培養(yǎng)學生的動手能力和探索精神;
、苣苷_地進行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;
三、教學過程設計
本節(jié)課設計了6個教學環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
、乓粋整數(shù)的平方一定是整數(shù)嗎?
、埔粋分數(shù)的平方一定是分數(shù)嗎?
目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的`說理.
效果:為后續(xù)環(huán)節(jié)的進行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分數(shù))嗎?
2.【剪剪拼拼】
把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?
目的:選取客觀存在的“無理數(shù)“實例,讓學生深刻感受“數(shù)不夠用了”.
效果:巧設問題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分數(shù)嗎?
【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?
釋2.滿足 的 為什么不是分數(shù)?
【憶一憶】:讓學生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分數(shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學習奠定了基礎
【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段
目的:創(chuàng)設從感性到理性的認知過程,讓學生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學習新知的興趣
效果:學生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學過的數(shù)不同,產(chǎn)生了學習新數(shù)的必要性.
第四環(huán)節(jié):應用與鞏固
內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】
【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:
1.長度是有理數(shù)的線段
2.長度不是有理數(shù)的線段
【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)
2.三邊長都是有理數(shù)
2.只有兩邊長是有理數(shù)
3.只有一邊長是有理數(shù)
4.三邊長都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿足 的
解: (右2)
仿:在數(shù)軸上表示滿足 的
【賽一賽】:右3是由五個單位正方形組成的紙片,請你把
它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)
目的:進一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對“新知”的理解,鞏固了本課所學知識.
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過本課學習,感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?
2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?
3.除了本課所認識的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.
效果:學生總結(jié)、相互補充,學會進行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習題2.1
六、教學設計反思
。ㄒ唬┥钍菙(shù)學的源泉,興趣是學習的動力
大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發(fā)學習者的學習積極性,學習才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內(nèi)容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.
。ㄈ⿵娀R間聯(lián)系,注意糾錯
既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
八年級數(shù)學教案 篇7
課時目標
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學重點
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學難點:
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學時間:一課時。
教學用具:投影儀等。
教學過程:
一.復習提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
⑤ ⑥ ⑦
二.新課講解:
設問:不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習:下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。
2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習:課后練習P6練習1、2題
設問:(讓學生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的`分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
。ò鍟忸}過程。)
3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。
增加例題:當x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當x≠±2時,分式有意義。
設問:什么時候分式的值為零呢?
例:
解:當 ① 分式的值為零
八年級數(shù)學教案 篇8
學習目標:
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對稱的性質(zhì)的`活動過程 ,積累數(shù)學活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.
3、利用軸對稱的基本性質(zhì)解決實際問題。
學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質(zhì)。
學習難點:軸對稱的性質(zhì)的理解和拓展運用。
學習過程 :
一、探索活動
如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點C,并仿照上面進行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對稱有哪些性質(zhì)?
6.軸對稱的性質(zhì):
(1)成軸對稱的兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級數(shù)學教案 篇9
教學目標:
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學重點:
三角形內(nèi)角和定理及其推論。
教學難點:
三角形內(nèi)角和定理的證明
教學用具:
直尺、微機
教學方法:
互動式,談話法
教學過程:
1、創(chuàng)設情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。
2、設問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內(nèi)角拼成了一個
什么角?問題2 此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的`關(guān)系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值
,那么對三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個銳角有何關(guān)系?
問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內(nèi)角關(guān)系的定理及推論
引導學生分析并嚴格書寫解題過程
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
八年級數(shù)學教案【薦】12-06
【薦】八年級數(shù)學教案12-03
八年級數(shù)學教案【推薦】12-04
【推薦】八年級數(shù)學教案12-05
八年級數(shù)學教案【熱門】12-03
八年級的數(shù)學教案15篇12-14
【熱】八年級數(shù)學教案12-07
人教版八年級數(shù)學教案11-04