有關(guān)八年級(jí)數(shù)學(xué)教案模板錦集8篇
在教學(xué)工作者開展教學(xué)活動(dòng)前,總歸要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么優(yōu)秀的教案是什么樣的呢?以下是小編幫大家整理的八年級(jí)數(shù)學(xué)教案8篇,僅供參考,大家一起來看看吧。
八年級(jí)數(shù)學(xué)教案 篇1
一、回顧交流,合作學(xué)習(xí)
【活動(dòng)方略】
活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.
【問題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長,在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計(jì)算出BC的長.(3000千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).
學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.
【問題探究2】(投影顯示)
一個(gè)零件的.形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.
【活動(dòng)方略】
教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.
學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個(gè)零件符合要求.
【問題探究3】
甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.
學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭取上臺(tái)演示
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.
二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.
數(shù)學(xué)思考
在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.
解決問題
一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.
二、會(huì)解決與分式的加減有關(guān)的簡單實(shí)際問題.
三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.
情感態(tài)度
通過師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).
重點(diǎn)
分式的加減法.
難點(diǎn)
異分母分式的加減法及簡單的分式混合運(yùn)算.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的
活動(dòng)1:問題引入
活動(dòng)2:學(xué)習(xí)同分母分式的加減
活動(dòng)3:探究異分母分式的加減
活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則
活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)
向?qū)W生提出兩個(gè)實(shí)際問題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.
類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡單運(yùn)算.
回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.
通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過分式在物理學(xué)的應(yīng)用及簡單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.
通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
教學(xué)過程設(shè)計(jì)
問題與情境
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
1.問題一:比較電腦與手抄的錄入時(shí)間.
2.問題二;幫幫小明算算時(shí)間
所需時(shí)間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過課件展示問題.學(xué)生積極動(dòng)腦解決問題,提出困惑:
分式如何進(jìn)行加減?
通過實(shí)際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.
。刍顒(dòng)2]
1.提出小學(xué)數(shù)學(xué)中一道簡單的分?jǐn)?shù)加法題目.
2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過課件出兩個(gè)小練習(xí).
教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.
學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.
通過例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).
由兩個(gè)學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).
運(yùn)用類比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).
師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會(huì)新知識(shí),提高自信心.
讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.
[活動(dòng)3]
1.教師以練習(xí)的形式通過“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的`加減.
教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.
由學(xué)生主動(dòng)提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.
通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會(huì)學(xué)習(xí)的樂趣.
。刍顒(dòng)4]
。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過課件出4個(gè)小練習(xí).
4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
5.教師使用課件展示[例4]
教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.
通過例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過程.
教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.
教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.
分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).
由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語言的精練.
讓學(xué)生體會(huì)運(yùn)用的公式解決問題的過程.
鍛煉學(xué)生運(yùn)用法則解決問題的能力,既準(zhǔn)確又有速度.
提高學(xué)生的計(jì)算能力.
通過分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.
提高學(xué)生綜合應(yīng)用知識(shí)的能力.
[活動(dòng)5]
1.教師通過課件出2個(gè)分式混合運(yùn)算的小練習(xí).
2.總結(jié):
a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說一說嗎?
b)⑴方法思路;
c)⑵計(jì)算中的主意事項(xiàng);
d)⑶結(jié)果要化簡.
3.作業(yè):
a)教科書習(xí)題16.2第4、5、6題.
學(xué)生練習(xí)、鞏固.
教師巡視指導(dǎo).
學(xué)生完成、交流.,師生評(píng)價(jià).
教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.
教師布置作業(yè).
鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.
提高學(xué)生歸納總結(jié)的能力.
八年級(jí)數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.
2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.
3.難點(diǎn)的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
、纫?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的`長度比較短邊長7米,比較長邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
、圃O(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí).
八年級(jí)數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的'方法.
經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問題3答案并不唯一,合理即可。
八年級(jí)數(shù)學(xué)教案 篇5
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
。1)請(qǐng)你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來探索這個(gè)問題。
探索活動(dòng)
通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動(dòng)
算一算
把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的.方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
。4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
方差的簡便公式:
推導(dǎo):以3個(gè)數(shù)為例
。ǘ(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來衡量一組數(shù)據(jù)的波動(dòng)大小的重要的量.
注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
八年級(jí)數(shù)學(xué)教案 篇6
一、 教學(xué)目標(biāo)
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問]如果題目為:當(dāng)字母為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
。1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的.解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
。1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
(1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
。1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
(3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
八年級(jí)數(shù)學(xué)教案 篇7
知識(shí)技能
1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。
2.探究線段垂直平分線的性質(zhì)。
過程方法
1.經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。
2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。
情感態(tài)度價(jià)值觀通過對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問題的能力。
教學(xué)重點(diǎn)
1.軸對(duì)稱的性質(zhì)。
2.線段垂直平分線的性質(zhì)。
教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。
教學(xué)方法和手段多媒體教學(xué)
過程教學(xué)內(nèi)容
引入中垂線概念
引出圖形對(duì)稱的性質(zhì)第一張幻燈片
上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對(duì)稱的性質(zhì)。
幻燈片二
1、圖中的.對(duì)稱點(diǎn)有哪些?
2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?
理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。
我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
八年級(jí)數(shù)學(xué)教案 篇8
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的.基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識(shí)相對(duì)較簡單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過程是一個(gè)由特殊到一般的認(rèn)識(shí)過程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問題,那就是符號(hào)問題,這方面還有待加強(qiáng)。
教學(xué)目標(biāo)
1、知識(shí)與技能:
掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。
2、過程與方法:
(1)通過同底數(shù)冪乘法性質(zhì)的推導(dǎo)過程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;
(2)通過性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問題的經(jīng)驗(yàn)。
3、情感態(tài)度與價(jià)值觀:
。1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過性質(zhì)的推導(dǎo)體會(huì)“特殊。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)的數(shù)學(xué)教案15篇12-14