天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>六年級數(shù)學教案>人教版六年級下冊數(shù)學教案

人教版六年級下冊數(shù)學教案

時間:2022-08-28 07:49:13 六年級數(shù)學教案 我要投稿

人教版六年級下冊數(shù)學教案模板錦集六篇

  作為一無名無私奉獻的教育工作者,時常需要編寫教案,編寫教案助于積累教學經驗,不斷提高教學質量。如何把教案做到重點突出呢?以下是小編為大家收集的人教版六年級下冊數(shù)學教案6篇,僅供參考,歡迎大家閱讀。

人教版六年級下冊數(shù)學教案模板錦集六篇

人教版六年級下冊數(shù)學教案 篇1

  教學目標:

  1.學生初步理解杠桿平衡的原理,并通過實驗探究,培養(yǎng)學生動手操作實踐,與人合作協(xié)調,及遷移、類推能力和抽象概括能力。

  2.經過啟發(fā)、討論和獨立思考、學生主動參與、積極探究,獲得了杠桿平衡的條件,學生認識水平、實踐能力和創(chuàng)新意識從中得到了培養(yǎng)。

  3.學生在實驗、實際操作中體驗學習的樂趣,并通過實際應用的練習,將課內外的知識有機結合,培養(yǎng)學生學以致用的應用意識和創(chuàng)新意識。

  重點、難點:

  1.教學重點:理解、掌握杠桿平衡的規(guī)律。

  2.教學難點:讓學生綜合應用所學的知識和方法解決實際問題。

  教學準備:

  竹竿,棋子,塑料袋(多媒體課件)

  教學過程

  一、準備材料,導入活動:

  1.檢查課前布置的制作工具(簡單杠桿)的作業(yè)。

  學生對照制作要求,自查和同組互相檢查。

  小黑板或媒體出示制作要求:

  (1)準備的竹竿長1m,盡量做到粗細均勻。

 。2)在竹竿中點打孔,拴繩子時注意繩子的長度,同時注意檢查拎起繩子后竹竿是否平衡。

  (3)從中點處每隔8cm做一個刻度記號,盡量等距離。

  拿出準備好的棋子和塑料袋。檢查大小是否一樣。

  2.揭示課題:有趣的平衡(板書)

  二、動手實踐,探索規(guī)律

  1.活動一:探索特殊條件下竹竿保持平衡的規(guī)律:

 。1)如果塑料袋掛在竹竿左右兩邊刻度相同的地方,怎樣放棋子才能保證平衡?

 、賹W生思考,回答問題!皟蛇吽诺钠遄右瑯佣唷!

 、谘菔荆喝纾鹤筮叿3個棋子,右邊也必須放3個棋子,這樣才能保證平衡。

 。2)如果左右兩邊塑料袋放入同樣多的棋子,它們移動到什么樣的位置才能保證平衡?

 、賹W生思考,說出自己的見解。“塑料袋掛在竹竿左右兩邊的刻度要相同!

 、谘菔尽H纾

  左邊塑料袋掛在刻度“4”的點上,右邊塑料袋也要掛在刻度“4”的點上,這樣才能保證平衡。

 。3)小結:

  你有什么體會?

  要保證竹竿平衡:中點左邊兩邊棋子個數(shù)相同,且所掛位置與中點,刻度(距離)要相等。

  2.活動二:探索在一般條件下竹竿保持平衡的規(guī)律(A)

  (1)左邊的塑料袋在刻度3上,放4個棋子,右邊的塑料袋在刻度4上,放幾個才能保證平衡?

 、僖卜4個棋子行不行?會產生什么結果?

 、趹摲艓讉?

  “放3個!

  (2)如果左邊的塑料袋在刻度6上放1個棋子。

 、儆疫叺乃芰洗诳潭3上放幾個呢?

  學生交流,各自說出自己的見解。

 、谟疫叺乃芰洗诳潭2上呢?

  學生不難得出結果,放3個。

 、塾疫叺'塑料袋在刻度1上呢?

  學生不難得出結果,放6個。

  (3)小結:

  師:你有什么體會?

  左右兩邊棋子個數(shù)與刻度數(shù)的積要相等。

  3.活動三:探索在一般條件下竹竿保持平衡的規(guī)律(B):

 。1)問題:左邊在刻度4上放3個棋子并保持不變,右邊分別在各個刻度上放幾個棋子才能保證平衡呢?

 。2)實驗活動:

 、賹W生動手進行實驗活動。

 、趯嶒灲Y果記錄下來。

 、劢處熖峁┍砀瘢龑W生展開活動。

  右刻度

  所放棋子數(shù)

  乘積

  (3)匯報結果。

  學生發(fā)現(xiàn):左右兩邊刻度數(shù)和所放棋子數(shù)的積相等時,竹竿才能保證平衡。

 。4)從表中你發(fā)現(xiàn)刻度數(shù)和所放棋子數(shù)成什么比例?

  學生觀察表中兩個量的變化情況,不難發(fā)現(xiàn)這兩種量成反比例

  三、應用規(guī)律,體會揣摩

  1.基本練習:

  母女倆在玩蹺蹺板,女兒體重12千克,坐的地方距支點15分米,母親體重60千克,她坐的地方距支點多遠才能保持蹺蹺板的平衡?

  提示:從新課探究的過程我們可以知道,體重和坐的地方距支點的長度成反比例。因此,可直接設她坐的的地方距支點的距離是x分米?梢缘玫椒匠

  60x=12×15

  解方程得x=3

  答:她坐的地方距支點3分米才能保持平衡。

  2.綜合練習:

  桌子上有一個天平,天平左右兩邊各有一個可以滑動的托盤,天平的臂上各有幾個相等的刻度,F(xiàn)在要把1克,2克,3克,4克,5克五個砝碼放在天平上,且使天平左右兩邊保持平衡,該怎樣放?

  提示:(1)根據(jù)臂長和質量成反比例

  (2)先確定每個托盤中所放砝碼的總質量,在確定臂長。

  四、回顧整理,反思提升

  1.談收獲。

  師:通過這節(jié)課,我們學到了什么知識?我們是用什么方法來研究這些知識的?

  2.評價。

  師:你對自己這節(jié)課的表現(xiàn)滿意嗎?

  可采取學生自評,互評,老師評價的方式進行。

  板書設計:

  有趣的平衡

  要保證竹竿平衡:中點左邊兩邊棋子個數(shù)相同,且所掛位置與中點,刻度(距離)要相等。

  左右兩邊刻度數(shù)和所放棋子數(shù)的積相等時,竹竿才能保證平衡。

  作業(yè)設計

  基礎:

  1.用邊長20厘米的方磚鋪一塊地,需要20xx塊,如果改用邊長為40厘米的方磚鋪地,需要多少塊?

  綜合:

  2.有一位菜販很不老實,他有一架動過手腳的天平。這架天平的兩臂不等長。有一天,當他向農民們購買實際重5千克的白菜時,就把白菜放在天平臂較短這一側,這樣稱起來較輕,天平顯示只有4千克重;而當他把白菜買出去的時候,他把白菜放在天平臂較長這一側,這樣稱起來白菜會有多少千克重?

  提示:

 。1)可以像例題中一樣,用列表的方法做。

  (2)根據(jù)臂長與質量成反比,列方程求解。

人教版六年級下冊數(shù)學教案 篇2

  (1)兩個質數(shù)的和是39,這兩個質數(shù)的積是( )。

  分析 本題考查的是質數(shù)的意義及數(shù)的奇偶性等知識。

  兩個數(shù)的和是39,說明這兩個數(shù)一個數(shù)是奇數(shù),一個數(shù)是偶數(shù),因為它們都是質數(shù),所以其中的偶數(shù)只能是2,則奇數(shù)是39-2=37,37×2=74。

  解答 74

  (2)120的因數(shù)有( )個。

  分析 求一個較小數(shù)的因數(shù)的個數(shù)一般用列舉法,但求較大數(shù)的因數(shù)的個數(shù)時,一般用分解質因數(shù)法,即先把120分解質因數(shù):120=2×2×2×3×5,然后借助每個因數(shù)的個數(shù)來計算。因數(shù)2的.個數(shù)是3個,因數(shù)3的個數(shù)是1個,因數(shù)5的個數(shù)也是1個,120的因數(shù)的個數(shù)為(3+1)×(1+1)×(1+1)=16(個)。

  解答 16

  ⊙探究活動

  1.課件出示題目。

  (1)一個長方體木塊,長2.7 m,寬1.8 m,高1.5 m。要把它切成大小相等的正方體木塊,不許有剩余,正方體的棱長最大是多少分米?

  (2)學校六年級有若干名同學排隊做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年級最少有多少人?

  2.明確探究要求。(小組合作、思考、交流)

  (1)這兩道題分別考查什么知識?

  (2)怎樣解決這兩個問題?

  (3)具體的解答過程是怎樣的?

  3.匯報。

  (1)先匯報前兩個問題。

  預設

  生1:第(1)題考查的是應用因數(shù)的知識解決問題的能力。

  生2:第(2)題考查的是應用倍數(shù)的知識解決問題的能力。

  生3:根據(jù)題意,正方體的最大棱長應該是長方體長、寬、高的最大公因數(shù),所以先把相關長度轉換單位,用整數(shù)表示,然后求長、寬、高的最大公因數(shù)。

  生4:根據(jù)題意,六年級人數(shù)比3、7、11的最小公倍數(shù)多2,所以先求出3、7、11的最小公倍數(shù),再加2就可以了。

  (2)嘗試解答。(關注學生求三個數(shù)的最大公因數(shù)或最小公倍數(shù)的情況,發(fā)現(xiàn)問題并及時點撥)

  (3)匯報解答過程。(指名板演,集體訂正)

  預設

  生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因為27、18、15的最大公因數(shù)是3,所以正方體的棱長最大是3 dm。

  生2:因為3、7、11的最小公倍數(shù)是3×7×11=231,231+2=233(人),所以六年級最少有233人。

  4.小結。

  解答此類問題,關鍵要弄清考查的是因數(shù)的知識還是倍數(shù)的知識,同時要會求兩個或三個數(shù)的最大公因數(shù)及最小公倍數(shù)。

  ⊙課堂總結

  通過本節(jié)課的學習,掌握了因數(shù)與倍數(shù)的相關知識,我們學會應用這些知識解決實際問題,學以致用。

  ⊙布置作業(yè)

  教材75頁5、9題。

  板書設計

  因數(shù)、倍數(shù)、質數(shù)、合數(shù)

  因數(shù)和倍數(shù)質數(shù)——質因數(shù)合數(shù)——分解質因數(shù)1公因數(shù)互質數(shù)最大公因數(shù)倍數(shù)——公倍數(shù)——最小公倍數(shù)能被2、5、3整除的數(shù)的特征。

人教版六年級下冊數(shù)學教案 篇3

  一、學習目標

 。ㄒ唬⿲W習內容

  《義務教育教科書數(shù)學》(人教版)六年級下冊第五單元第68~69頁的例1、2。“抽屜原理”是一類較為抽象和艱澀的數(shù)學問題,對全體學生而言具有一定的挑戰(zhàn)性。為此,教材選擇了一些常見的、熟悉的事物作為學習內容,經歷將具體問題“數(shù)學化”的過程。

 。ǘ┖诵哪芰

  經歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。

  (三)學習目標

  1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。

  2.通過操作、觀察、比較、說理等數(shù)學活動,經歷鴿巢原理的形成活動,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。

 。ㄋ模⿲W習重點

  了解簡單的鴿巢問題,理解“總有”和“至少”的含義。

  (五)學習難點

  運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。

 。┡涮踪Y源

  實施資源:《鴿巢原理》名師教學課件

  二、學習設計

 。ㄒ唬┱n堂設計

  1.談話導入

  師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。

  師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節(jié)課以后大家就知道了。

  2.問題探究

  (1)呈現(xiàn)問題,引出探究

  出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。

  師:“總有”是什么意思?“至少”有2支是什么意思?

  學生自由發(fā)言。

  預設:一定有

  不少于兩只,可能是2支,也可能是多于2支。

  就是不能少于2支。

 。2)體驗探究,建立模型

  師:好的,看來大家已經理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發(fā)現(xiàn)?

  小組活動:學生思考,擺放。

 、倜杜e法

  師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。

  預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。

  師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?

 。ú灰欢ǎ部赡芊旁谄渌P筒里。)

  師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?

  預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。

  師:這種放法可以記作(3,1,0)

  師:這3支鉛筆一定要放在第一個筆筒里嗎?

 。ú灰欢ǎ

  師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。

  預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。

  師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?

  預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。

  預設4:還可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  師:還有其它的放法嗎?

 。]有了)

  師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)

  師:這幾種放法如果用一句話概括可以怎樣說?

 。ㄑb得最多的筆筒里至少裝2支。)

  師:裝得最多的.那個筆筒一定是第一個筆筒嗎?

 。ú灰欢,哪個筆筒都有可能。)

  【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數(shù)的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。】

 、诩僭O法

  師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?

  預設:先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。

  師:“平均放”是什么意思?

  預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。

  師:為什么要先平均分?

  學生自由發(fā)言。

  引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。

  師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現(xiàn)總有一個筆筒里至少有2支鉛筆。

  師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。

  【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路!

 。3)提升思維,建立模型

 、偌由罡形

  師:如果把5支筆放進4個筆筒里呢?大家討論討論。

  預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  師:把7支筆放進6個筆筒里呢?還用擺嗎?

  學生自由發(fā)言。

  師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?

  師:你發(fā)現(xiàn)了什么?

  預設:我發(fā)現(xiàn)鉛筆的支數(shù)比筆筒數(shù)多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  師:你的發(fā)現(xiàn)和他一樣嗎?

  學生自由發(fā)言。

  師:你們太了不起了!

  師:難道這個規(guī)律只有在鉛筆的支數(shù)比筆筒數(shù)多1的情況下才成立嗎?你認為還有什么情況?

  練一練:

  師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”

  師:說說你的想法。

  師:由此看來,只要分的物體比抽屜的數(shù)量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理。【板書課題】

  介紹狄利克雷:

  師:鴿巢原理最先是由19世紀的德國數(shù)學家狄利克雷提出來應用于解決問題的,后來人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。

  ②建立模型

  出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?

  學生獨立思考、討論后匯報:

  師:怎樣用算式表示我們的想法呢?生答,板書如下。

  7÷3=2本……1本(2+1=3)

  師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。

  出示:

  把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  10÷3=3本……1本(3+1=4)

  師:觀察板書你有什么發(fā)現(xiàn)?

  預設:我發(fā)現(xiàn)“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。

  師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。

  學生討論,匯報:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。

  師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?

  預設:我認為根“商”有關,只要用“商+1”就可以得到。

  師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)啊!果然是只要用“商+1”就可以了。

  引導總結:我們把要分的物體數(shù)量看做a,抽屜的個數(shù)看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。

  鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。

  【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數(shù)的除法”的形式?梢允箤W生更好地理解“抽屜原理”的一般思路,經歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力?疾槟繕1、2】

  3.鞏固練習

 。1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現(xiàn)在能解釋一下嗎?(出示課件)學生思考,討論。

 。2)第69頁的做一做第1、2題。

  4.全課總結

  師:通過這節(jié)的學習,你有什么收獲?

  小結:今天這節(jié)課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們去制造抽屜。

 。ㄈ┱n時作業(yè)

  1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?

  答案:2名。

  解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】

  2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。

  答案:8名。

  解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】

  第二課時鴿巢原理

  中原區(qū)汝河新區(qū)小學師芳

  一、學習目標

 。ㄒ唬⿲W習內容

  《義務教育教科書數(shù)學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。

 。ǘ┖诵哪芰

  在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。

 。ㄈ⿲W習目標

  1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。

  2.經歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。

 。ㄋ模⿲W習重點

  引導學生把具體問題轉化為“抽屜原理”。

  (五)學習難點

  找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。

  (六)配套資源

  實施資源:《鴿巢原理》名師教學課件

  二、學習設計

  (一)課堂設計

  1.情境導入

  師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們任意挑出5張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。

  師:神奇吧!你們想不想表演一個呢?

  師:現(xiàn)在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數(shù)相同呢?

  在學生抽的基礎上揭示課題。教師:這節(jié)課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)

  2.探究新知

 。1)學習例3

  ①猜想

  出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?

  預設:2個、3個、5個…

  ②驗證

  師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。

  可以用表格進行整理,課件出示空白表格:

  學生獨立思考填表,小組交流。

  全班匯報。

  匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規(guī)律可循。

  課件匯總,思考:從這里你能發(fā)現(xiàn)什么?

  教師:通過驗證,說說你們得出什么結論。

  小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。

 、坌〗Y

  師:為什么球的個數(shù)一定要比抽屜數(shù)多?而且是多1呢?

  預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數(shù)多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數(shù)必須“至少”,所以摸3個球就夠了。

  師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色”。這一結論是正確的。

  板書:只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色;蛘哒f只要物體數(shù)比抽屜數(shù)至少多1,就能保證有一個抽屜至少放2個物體。

 。2)引導學生把具體問題轉化成“抽屜原理”。

  師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯(lián)系起來思考呢?

  思考:①摸球問題與“抽屜原理”有怎樣的聯(lián)系?

 、趹摪咽裁纯闯伞俺閷稀?有幾個“抽屜”?要分別放的東西是什么?

  學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。

  從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。

  結論:要保證摸出的球有兩個同色,摸出的球數(shù)至少要比抽屜數(shù)多1。

  3.鞏固練習

 。1)完成教材第70頁“做一做”第1題。

 。2)完成教材第70頁“做一做”第2題。

  4.課堂總結

  師:這節(jié)課你學到了什么知識?談談你的收獲和體驗。

 。ㄈ┱n時作業(yè)

  1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?

  答案:5只。

  解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數(shù)比抽屜多1!究疾槟繕1、2】

  2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?

  答案:16條。

  解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數(shù)是:5×3+1=16。【考查目標1、2】

人教版六年級下冊數(shù)學教案 篇4

  教學內容:

  教材第15~16頁的例4和第16頁的試一試、練一練,完成練習三第1~3題。

  教學目標:

  1.結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。

  2.經歷類比猜想驗證說明的探索圓柱體積的計算方法的進程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3.引導學生探索和解決問題,滲透、體驗知識間相互轉化的思想方法。

  重點難點:

  掌握圓柱體積公式的推導過程。

  教學資源:

  PPT課件 圓柱等分模型

  教學過程:

  一、聯(lián)系舊知,設疑激趣,導入新課。

  1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。

  2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?

  啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關?怎么算?

  3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。

  二、動手操作,探索新知,教學例4

  1.觀察比較

  引導學生觀察例4的三個立體,提問

 、胚@三個立體的底面積和高都相等,它們的體積有什么關系?

 、崎L方體和正方體的體積一定相等嗎?為什么?

  ⑶圓柱的體積與長方體和正方體的體積可能相等嗎?為什么?

  2.實驗操作

 、耪勗挘捍蠹叶颊J為圓柱的體積與長方體、正方體的體積可能是相等的',而且都等于底面積乘高。那用什么辦法驗證呢?讓學生在小組中說說自己的想法。

  提醒:圓的面積公式是怎么推導出來的?我們能不能將圓柱轉化成長方體呢?

 、铺岢鲆螅耗隳芟朕k法把圓柱轉化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準備好的圓柱,操作一下。

 、怯懻摻涣鳎喝绻褕A柱的底面平均分成16份,切開后能否拼成一個近似的長方體?

  操作教具,讓學生觀察。

  引導想像:如果把底面平均分的份數(shù)越來越多,結果會怎么樣?

  演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學生清楚地認識到:拼成的立體會越來越接近長方體。

  3.推出公式

 、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關系?

  指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。

  ⑵想一想:怎樣求圓柱的體積?為什么?

  根據(jù)學生的回答小結并板書圓柱的體積公式

  圓柱的體積=底面積高

  ⑶引導用字母公式表示圓柱的體積公式:V=sh

  長方體的體積 = 底面積 高

  圓柱的體積 = 底面積 高

  用字母表示計算公式V= sh

  三、分層練習,發(fā)散思維,教學試一試

  ⑴讓學生列式解答后交流算法。

  ⑵討論:知道什么條件就一定能算出圓柱的體積了?分別怎么算?

 。╯和h,r和h,d和h,c和h)

  四、鞏固拓展練習

  1.做練一練第1題。

 、耪f一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?

 、聘髯跃毩,并指名板演。

 、菍φ瞻逖,說說計算過程。

  2.做練一練第2題。

  已知底面周長和高,該怎么求它的體積呢?引導學生根據(jù)底面周長求出底面積。

  五、小結

  這節(jié)課我們學習了什么?有哪些收獲?還有什么疑問?

  六、作業(yè)

  練習三第1~3題。

人教版六年級下冊數(shù)學教案 篇5

  一、創(chuàng)設情境,提出問題

  師:同學們,你們知道一個人去找工作時,他一般最關注什么?

  生:工資。

  生:工作環(huán)境和待遇。

  師:找工作時工資的多少往往是人們最關心的,李叔叔看到一份超市招聘公告上寫著:本超市工作人員月平均工資1000元,現(xiàn)招收員工若干。李叔叔一看條件不錯,就應聘做了超市的一名工作人員?傻谝粋月他只拿到工資500元,第二個月也只有600元,問了一些同事大部分都是600元,少數(shù)超過600元。他找到了超市副經理說:你們欺騙了我,我已經問過其他工人沒有一個工人的工資超過1000元,平均工資怎么可能是每月1000元呢?超市副經理拿出了超市工作人員的工資表:

  某超市工作人員月工資如下表單位:元經理副經理員工A員工B員工C員工D員工E員工F員工G員工H員工I

  月工資30002000900800700700600600600600500

  問題1請大家仔細觀察表中的數(shù)據(jù),討論回答下面的問題:

  (1)副經理說月平均工資1000元是否欺騙了李叔叔?

  (2)你有什么想法?

  生:剛才我算了一下,這11個數(shù)的平均數(shù)是1000,所以月平均工資1000元沒有欺騙。

  師:對,我們學過平均數(shù)的知識,平均數(shù)是1000元是沒有錯。

  那為什么李叔叔只能拿到600元。大家可以闡述一下自己的觀點。

  生:因為兩位經理的工資很高,帶動了員工的平均公資。

  師:,看來這組數(shù)據(jù)中,由于出現(xiàn)了兩個特別的數(shù)據(jù),所以平均數(shù)1000不能真實反映大多數(shù)員工的工資水平,你認為應該用什么數(shù)反映這個超市的工資水平比較合理呢?請大家觀察這些數(shù)據(jù)的特點,然后說說你的想法。

  【設計意圖:本環(huán)節(jié)痛過李叔叔在找工作時遇到的實際問題,使數(shù)學貼近生活,激發(fā)學生的興趣,讓學生在幫助李叔叔的過程中感受到在這里平均數(shù)和中位數(shù)不能真實反映員工的工資水平,初步感受眾數(shù)產生的必要性!

  學生小組討論:

  生1:我們小組討論后認為用600元是比較好的,因為這里600元的人是最多的,有4個人。

  生2:我認為700元比較合理,因為它是這組數(shù)據(jù)的中位數(shù)。

  師:大家分析的不錯,很有自己的想法。平均數(shù)會受一些特別偏大或偏小的數(shù)據(jù)的影響。那么李叔叔最有可能掙到多少錢?

  生:600元

  師:600在這里出現(xiàn)次數(shù)最多,它代表的是多數(shù)人的工資水平,所以600就是這組數(shù)據(jù)的眾數(shù)。

  二、探究新知。

  板書:眾數(shù)。

  【設計意圖;本環(huán)節(jié)提出這樣的問題,主要想通過工資表中出現(xiàn)次數(shù)最多的600理解眾的含義,進而理解眾數(shù)的意義。】

  師:請大家試著說一說眾數(shù)的意義;然后教師小結出示概念。齊讀概念。

  師:現(xiàn)在,我們已經知道了三個統(tǒng)計量,那么,面對具體的問題,我們應該選擇哪個統(tǒng)計量來描述數(shù)據(jù)的集中趨勢呢、下面請看這個問題。

  五(2)班要選10名同學組隊參加集體舞比賽。下面是15名候選隊員的`身高情況。(單位:米)

  1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

  1.51,1.51,1.51,1.51,1.52,1.54,1.54

  你認為參賽隊員的身高是多少比較合適?

  學生小組合作。根據(jù)學生匯報,教師小結。從審美角度以及隊伍整齊觀點來看應以眾數(shù)1.51為標準選擇隊員身高會比較均勻。

  【設計意圖:本環(huán)節(jié)通過小組活動給學生提供參與數(shù)學活動的機會,使他們在思考,探究,討論。交流中充分發(fā)表自己的意見,在實際問題中體會三個統(tǒng)計量的區(qū)別和他們各自的適用限度,讓學生意識到生活中數(shù)學無處不在,感受和體會數(shù)學中美的因素】。

  三、分析數(shù)據(jù),嘗試統(tǒng)計決策。

  師:同學們,全世界都關注的奧運會就要在北京召開了,我國的體育健兒正在緊張的訓練,準備迎戰(zhàn)奧運會。國家隊的教練想在兩名優(yōu)秀的射擊運動員中選擇一名去參加比賽:(出示兩名運動員成績)

  甲:9.5109.49.59.79.59.49.39.49.3

  乙:109108.39.89.5109.88.79.9

  看到兩名運動員的成績,大家能否猜想一下,教練會選擇誰去呢?

  生1:我認為會選甲,甲的成績很高。

  生2:我想會選乙,乙打中10環(huán)的多。

  生3:我想應該看看他們的平均分。

  師:大家說的很好,大膽的說出了自己的想法;讓我們用掌聲來鼓勵他們。那我們就先從平均數(shù)入手,大家動手做一做,看看他們的平均數(shù)是多少?(可以同桌合作)

  生:老師,平均數(shù)一樣,都是9.5。

  師;平均數(shù)一樣我們該怎么辦呢?

  生1:看眾數(shù)。甲的眾數(shù)是9.5。

  生2:9.4也出現(xiàn)三次,9.4也是眾數(shù)。那兩個都是眾數(shù)嗎?

  師:當然,眾數(shù)可以不止一個。也可以沒有,比如說我們班前五名同學的成績就沒有重復的,那自然就沒有眾數(shù)了。

  生:乙的眾數(shù)是10,所以乙獲勝的機會大一些。

  師:在平均數(shù)相同時,我們應該看眾數(shù)。

  【設計意圖:通過一組練習,使學生能靈活選擇適當?shù)慕y(tǒng)計量表示一些數(shù)據(jù)的特點,并從數(shù)據(jù)的波動大小中,體現(xiàn)概率的可能性。讓學生能根據(jù)統(tǒng)計量進行簡單的預測或作出決策。使學生充分感受到數(shù)學與生活的聯(lián)系,并從解決問題中體會到成功的喜悅,從而更加熱愛數(shù)學!

  四、學生暢談收獲。

  五:教師小結。

  同學們,通過本節(jié)課的學習,我們認識了眾數(shù)這一統(tǒng)計量,并且通過練習理解了平均數(shù),中位數(shù)和眾數(shù)這三個統(tǒng)計量的聯(lián)系與區(qū)別,根據(jù)我們分析數(shù)據(jù)的不同需要,可以正確選擇合適的統(tǒng)計量。

  案例反思:

  1、創(chuàng)設問題情境,教學開始,我提出的是一個生活中的真實問題。讓學生在參與中引發(fā)他們的理性認識,通過學生的獨立思考和交流,引起了學生對月工資水平的認知沖突,發(fā)現(xiàn)單靠平均數(shù)來描述數(shù)據(jù)特征有時是不合適的。讓學生從具體問題中體會數(shù)學在生活中的重要性

  2、在分析討論中促進學生對概念的理解,眾數(shù)的概念,我沒有直接給出,而是通過學生觀察、分析、討論、在共享集體思維成果的基礎上逐步建構的,這樣做使學生逐步體會到這三個統(tǒng)計量都反映一組數(shù)據(jù)的集中趨勢,但描述的角度并不相同,三者之間既有聯(lián)系又有區(qū)別,同時也滲透出了他們的優(yōu)越性與局限性?梢员容^全面、正確地理解所學知識。教學中,讓學生通過思考總結,如射擊隊員的選擇,數(shù)據(jù)越多,頻率越穩(wěn)定。如能經過更多數(shù)據(jù)的收集和整理,根據(jù)方差的特點由數(shù)據(jù)的穩(wěn)定性及波動大小再考慮一下其他因素,可能結果會不一樣。對不完善的地方再加以補充,充分發(fā)揮學生在學習中的主體地位,同時,教師作為參與者,主動加入到學生的討論中,對學生的認識起到幫助和促進的作用。

人教版六年級下冊數(shù)學教案 篇6

  教學目標

  1、使學生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。

  2、讓學生經歷觀察、操作、討論等數(shù)學活動過程,理解圓柱體積公式的推導過程,引導學生探討問題,體驗轉化和極限的思想。

  3、在圖形的變換中,培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領悟學習數(shù)學的方法,激發(fā)學生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。

  教學重點、難點

  1、圓柱體積計算公式的推導過程并能正確應用。

  2、借助教具演示,弄清圓柱與長方體的關系。

  教具、學具準備

  多媒體課件、長方體、圓柱形容器若干個;學生準備推導圓柱體積計算公式用學具。

  教學設想

  《 圓柱的體積 》是學生在有了圓柱、圓和長方體的相關的基礎上進行教學的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現(xiàn)數(shù)學知識“從生活中來到生活去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探索。

  教學過程

  一、創(chuàng)設情境,激疑引入

  “水是生命之源!”節(jié)約用水是我們每個公民應盡的義務。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。

  1、出示裝了水的圓柱容器。

  (1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?

 。2)討論后匯報:

  生1:用量筒或量杯直接量出它的體積;

  生2:用秤稱出水的重量,然后進一步知道體積;

  生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。

  師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?

  生1:把水到入長方體容器中……

  生2:我們學過了長方體的體積計算,只要量出長、寬、高就行

  [設計意圖:通過本環(huán)節(jié),給學生創(chuàng)設一個生活中的情境,提出問題,學習身邊的數(shù)學,激起學生的學習興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學內容作了鋪墊的準備]

  2、創(chuàng)設問題情境。

  師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學們想出來的辦法嗎?

  [設計意圖:進一步從實際需要提出問題,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]

  師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

  二、經歷體驗,探究新知

  1、回顧舊知,幫助遷移

  (1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系?

  生1:圓柱的上下兩個底面是圓形

  生2:側面展開是長方形……

  生3:說明圓柱和我們學過的.圓和長方形有聯(lián)系

  師:請同學們想想圓柱的體積與什么有關?

  生1:可能與它的大小有關

  生2:不是吧,應該與它的高有關

  [設計意圖:溫故而知新,既復習了舊知識又引出了新知識,學生在不知不覺中就學到了新知。]

 。2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉化成已學過的圖形,來推導出圓面積公式的。

  配合學生回答演示課件。

  [設計意圖:通過想象,進一步發(fā)展學生的空間觀念,由“形”到“體”;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經驗和方法的遷移作鋪墊]

  2、小組合作,探究新知

 。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導學生說出圓柱可能轉化成我們學過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉化近似的長方體了。)

 。2)學生以小組為單位操作體驗。

  把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉化成近似的長方體了。使學生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份……)

  [設計意圖:教師提出問題,學生帶著問題大膽猜測、動手體驗。這樣學生在自主探索、體驗、領悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]

  (3)學生小組匯報交流:

  近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。

  教師根據(jù)學生匯報報,用教具進行演示。

  (4)概括板書:根據(jù)圓柱與近似長方體的關系,推導公式:

  長方體的體積 = 底面積 × 高

  ↓ ↓ ↓

  圓柱的體積 = 底面積 × 高

  用字母表示計算公式V= sh

  設計意圖:首先通過學生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉化的雛形,然后再通過實踐

【人教版六年級下冊數(shù)學教案】相關文章:

人教版六年級下冊數(shù)學教案06-30

人教版六年級下冊數(shù)學教案06-17

人教版六年級下冊數(shù)學教案03-14

人教版六年級下冊數(shù)學教案(通用)08-26

關于人教版六年級下冊數(shù)學教案范文09-02

人教版六年級下冊數(shù)學教案7篇11-19

人教版六年級下冊數(shù)學教案(8篇)01-13

人教版六年級下冊數(shù)學教案8篇01-13

人教版六年級下冊數(shù)學教案(6篇)02-18

人教版六年級下冊數(shù)學教案5篇01-11