天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

八年級數學教案

時間:2022-08-23 20:52:20 八年級數學教案 我要投稿

有關八年級數學教案模板匯總九篇

  作為一名老師,常常要根據教學需要編寫教案,教案是實施教學的主要依據,有著至關重要的作用。如何把教案做到重點突出呢?以下是小編收集整理的八年級數學教案9篇,僅供參考,大家一起來看看吧。

有關八年級數學教案模板匯總九篇

八年級數學教案 篇1

  課時目標

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意義、分式的值是否等于零的識別方法。

  教學重點

  正確理解分式的意義,分式是否有意義的.條件及分式的值為零的條件。

  教學難點:

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學時間:一課時。

  教學用具:投影儀等。

  教學過程:

  一.復習提問

  1.什么是整式?什么是單項式?什么是多項式?

  2.判斷下列各式中,哪些是整式?哪些不是整式?

 、伲玬2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新課講解:

  設問:不是整工式子中,和整式有什么區(qū)別?

  小結:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

  練習:下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  強調:(6)+4帶有是無理式,不是整式,故不是分式。

  2.小結:對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  練習:課后練習P6練習1、2題

  設問:(讓學生看課本上P5“思考”部分,然后回答問題。)

  例題講解:課本P5例題1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

  (板書解題過程。)

  3.小結:分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

  增加例題:當x取什么值時,分式有意義?

  解:由分母x2-4=0,得x=±2。

  ∴ 當x≠±2時,分式有意義。

  設問:什么時候分式的值為零呢?

  例:

  解:當 ① 分式的值為零

八年級數學教案 篇2

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標系(2)

  教學目標

  知識與技能

  1.在給定的直角坐標系下,會根據坐標描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

  過程與方法

  1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數形結合思想,培養(yǎng)學生的合作 交流能力;

  2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養(yǎng)學生的轉化意識。

  情感態(tài)度與價值觀

  通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數學的興趣。

  教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學過程

  第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

  在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的`坐標有什么特點。

  練習:指出下列 各點以及所在象限或坐標軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)

  由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?

  (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標系畫,要求每位同學獨立完成。

  (學生描點、畫圖)

  (拿出一位做對的學生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結,全班交流)

  本節(jié)課在復習上節(jié)課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

  在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

  第五環(huán)節(jié) 布置作業(yè)

  習題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級數學教案 篇3

  知識技能

  1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

  2.探究線段垂直平分線的性質。

  過程方法

  1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發(fā)展空間觀察。

  2.探索線段垂直平分線的性質,培養(yǎng)學生認真探究、積極思考的能力。

  情感態(tài)度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發(fā)學生學習的'主動性和積極性,并使學生具有一些初步研究問題的能力。

  教學重點

  1.軸對稱的性質。

  2.線段垂直平分線的性質。

  教學難點體驗軸對稱的特征。

  教學方法和手段多媒體教學

  過程教學內容

  引入中垂線概念

  引出圖形對稱的性質第一張幻燈片

  上節(jié)課我們共同探討了軸對稱圖形,知道現(xiàn)實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對稱的性質。

  幻燈片二

  1、圖中的對稱點有哪些?

  2、點A和A的連線與直線MN有什么樣的關系?

  理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

  我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

  定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

八年級數學教案 篇4

  一、教學目標

  1.理解一個數平方根和算術平方根的意義;

  2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;

  3.通過本節(jié)的訓練,提高學生的邏輯思維能力;

  4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數學奧秘的興趣。

  二、教學重點和難點

  教學重點:平方根和算術平方根的概念及求法。

  教學難點:平方根與算術平方根聯(lián)系與區(qū)別。

  三、教學方法

  講練結合

  四、教學手段

  幻燈片

  五、教學過程

 。ㄒ唬┨釂

  1、已知一正方形面積為50平方米,那么它的邊長應為多少?

  2、已知一個數的平方等于1000,那么這個數是多少?

  3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?

  這些問題的共同特點是:已知乘方的結果,求底數的'值,如何解決這些問題呢?這就是本節(jié)內容所要學習的。下面作一個小練習:填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數解,在教學時應注意糾正。

  由練習引出平方根的概念。

 。ǘ┢椒礁拍

  如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。

  用數學語言表達即為:若x2=a,則x叫做a的平方根。

  由練習知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

 。 )2=—4

  學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的。下面總結一下平方根的性質(可由學生總結,教師整理)。

 。ㄈ┢椒礁再|

  1.一個正數有兩個平方根,它們互為相反數。

  2.0有一個平方根,它是0本身。

  3.負數沒有平方根。

  (四)開平方

  求一個數a的平方根的運算,叫做開平方的運算。

  由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。

 。ㄎ澹┢椒礁谋硎痉椒

  一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。

  練習:1.用正確的符號表示下列各數的平方根:

  ①26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

 、247的平方根是

 、0。2的平方根是

 、3的平方根是

 、 的平方根是

  由學生說出上式的讀法。

  例1。下列各數的平方根:

 。1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根為±9。即:

 。2)

  的平方根是 ,即

 。3)

  的平方根是 ,即

 。4)∵(±0。7)2=0。49,

  ∴0。49的平方根為±0。7。

  小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。

  六、總結

  本節(jié)課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。

  七、作業(yè)

  教材P。127練習1、2、3、4。

  八、板書設計

  平方根

  (一)概念 (四)表示方法 例1

 。ǘ┬再|

 。ㄈ╅_平方

  探究活動

  求平方根近似值的一種方法

  求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。

  例1。求 的值。

  解 ∵92102,

  兩邊平方并整理得

  ∵x1為純小數。

  18x1≈16,解得x1≈0。9,

  便可依次得到精確度

  為0。01,0。001,……的近似值,如:

  兩邊平方,舍去x2得19.8x2≈—1.01

八年級數學教案 篇5

  一、教學目的

  1.使學生進一步理解自變量的取值范圍和函數值的意義.

  2.使學生會用描點法畫出簡單函數的圖象.

  二、教學重點、難點

  重點:1.理解與認識函數圖象的意義.

  2.培養(yǎng)學生的看圖、識圖能力.

  難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.

  三、教學過程

  復習提問

  1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結合函數y=x的圖象,說明什么是函數的圖象?

  3.說出下列各點所在象限或坐標軸:

  新課

  1.畫函數圖象的方法是描點法.其步驟:

  (1)列表.要注意適當選取自變量與函數的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

  一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.

  (2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.

  (3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

  一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的.幾個點連成表示函數的曲線(或直線).

  2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的圖象.

  小結

  本節(jié)課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.

  練習

 、龠x用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)

 、谘a充題:畫出函數y=5x-2的圖象.

  作業(yè)

  選用課本習題.

  四、教學注意問題

  1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.

  2.注意充分調動學生自己動手畫圖的積極性.

  3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.

八年級數學教案 篇6

  教學任務分析

  教學目標

  知識技能

  探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.

  數學思考

  能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

  情感態(tài)度

  在應用等腰梯形的性質的過程養(yǎng)成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.

  重點

  等腰梯形的性質及其應用.

  難點

  解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

  教學流程安排

  活動流程圖

  活動的內容和目的

  活動1想一想

  活動2說一說

  活動3畫一畫

  活動4做—做

  活動5練一練

  活動6理一理

  觀察梯形圖片,引入本節(jié)課的學習內容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉化關系.

  探究得到等腰梯形的性質.

  通過解決具體問題,尋找解決梯形問題的方法.

  通過整理回顧,鞏固知識、提高能力、滲透思想.

  教學過程設計

  問題與情景

  師生行為

  設計意圖

  [活動1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

  演示圖片,學生欣賞.

  結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

  由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.

  [活動2]

  梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

  學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學生歸納、總結的能力.

  問題與情景

  師生行為

  設計意圖

  一些基本概念

 。1)(如圖):底、腰、高.

  (2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

 。3)直角梯形:有一個角是直角的`梯形叫做直角梯形.

  學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調:①梯形與四邊形的關系;

 、谏、下底的概念是由底的長短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質做準備.

  [活動3]

  畫一畫

  在下列所給圖中的每個三角形中畫一條線段,

 。1)怎樣畫才能得到一個梯形?

  (2)在哪些三角形中,能夠得到一個等腰梯形?

  在學生獨立探究的基礎上,學生分組交流.

  教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

  本次活動教師應重點關注:

 。1)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉化方法.

 。2)學生能否將等腰三角形轉化為等腰梯形.

 。3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.

  等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.

  問題與情景

  師生行為

  設計意圖

  [活動4]

  做—做

  探索等腰梯形的性質(引入用軸對稱解決問題的思想).

  在一張方格紙上作一個等腰梯形,連接兩條對角線.

  (1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

  (2)這個等腰梯形的兩條對角線的長度有什么關系?

  學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

  針對不同認識水平的學生,教師指導學生活動.

  師生共同歸納:

 、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.

 、诘妊菪蝺裳嗟龋

 、鄣妊菪瓮坏咨系膬蓚角相等.

 、艿妊菪蔚膬蓷l對角線相等.

  教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.

  [活動5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長.

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

  分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

  其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.

  問題與情景

  師生行為

  設計意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

  [活動6]

  1.小結

  2.布置作業(yè)

  (1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

 。2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

 。3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

  師生歸納總結:

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

 。2)“作高”:使兩腰在兩個直角三角形中(圖2);

 。3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

 。4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

 。5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

  盡量多地讓學生參與發(fā)言是一個交流的過程.

  梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

  學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

八年級數學教案 篇7

  一、教學目標

 。ㄒ唬、知識與技能:

  (1)使學生了解因式分解的意義,理解因式分解的概念。

 。2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

 。ǘ、過程與方法:

  (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

 。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

  (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

  二、教學重點和難點

  重點:因式分解的概念及提公因式法。

  難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學過程

  教學環(huán)節(jié):

  活動1:復習引入

  看誰算得快:用簡便方法計算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設計意圖:

  如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的'平方差公式,幫助他們順利地逆向運用平方差公式。

  活動2:導入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

  設計意圖:

  引導學生把這個式子分解成幾個數的積的形式,繼續(xù)強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

  活動3:探究新知

  看誰算得準:

  計算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

  (3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據上面的算式填空:

  (1)a+b+c= ;

 。2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

  (5)2-6+9= 。

  在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數學教案 篇8

  教學目標

  一、教學知識點:

  1.旋轉的定義.2.旋轉的基本性質.

  二、能力訓練要求:

  1.通過具體實例認識旋轉,理解旋轉的基本涵義.

  2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.

  三、情感與價值觀要求

  1.經歷對生活中與旋轉現(xiàn)象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

  2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發(fā)展學生的數學觀.

  教學重點:旋轉的基本性質.

  教學難點:探索旋轉的基本性質.

  教學方法:

  1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

  2、采用多媒體課件輔助教學。

  教學過程:

  一.巧設情景問題,引入課題

  日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉動呢?

  1.在這些轉動的現(xiàn)象中,它們都是繞著一個點轉動的.

  2.每個物體的轉動都是向同一個方向轉動.

  3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節(jié)課我們就來探討生活中的旋轉.

  二.講授新課

  在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

  (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

  (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?

  答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

  因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

  由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的.角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

 。劾1](課本68頁例1)

 。蹘熒参觯萁浹菔(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習

  課本P69隨堂練習.

  1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結

  五.課后作業(yè):課本P69習題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉規(guī)律.

  結果:旋轉現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

  過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

  結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

  板書設計:

  教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。

八年級數學教案 篇9

  1、教材分析

  (1)知識結構

  (2)重點、難點分析

  本節(jié)內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.

  本節(jié)內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

  2、 教法建議

  本節(jié)課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:

  (1)參與探索發(fā)現(xiàn),領略知識形成過程

  學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的.形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.

  (2)采用“類比”的學習方法,獲取逆定理

  線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.

  (3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養(yǎng)學生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.

【八年級數學教案】相關文章:

八年級的數學教案12-14

八年級數學教案06-18

初中八年級數學教案11-03

八年級的數學教案15篇12-14

【熱門】八年級數學教案11-29

八年級數學教案【熱】11-29

八年級數學教案【薦】12-06

【熱】八年級數學教案12-07

八年級上冊數學教案11-09

人教版八年級數學教案11-04