精選八年級(jí)數(shù)學(xué)教案錦集六篇
作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案6篇,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)教案 篇1
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡(jiǎn)公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡(jiǎn)公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過(guò)程:
(一)引入
(1)如何計(jì)算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡(jiǎn)公分母的概念。
(2)如何計(jì)算:
(3)何計(jì)算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的`關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母.
通常取各分母的所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做最簡(jiǎn)公分母.
根據(jù)分式通分和最簡(jiǎn)公分母的定義,將分式通分:
最簡(jiǎn)公分母為:
然后根據(jù)分式的基本性質(zhì),分別對(duì)原來(lái)的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx
通過(guò)本例使學(xué)生對(duì)于分式的通分大致過(guò)程和思路有所了解。讓學(xué)生歸納通分的思路過(guò)程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問(wèn)“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡(jiǎn)公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù).
解:∵最簡(jiǎn)公分母是10a2b2c2,
由學(xué)生歸納最簡(jiǎn)公分母的思路。
分式通分中求最簡(jiǎn)公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)教案 篇2
課時(shí)目標(biāo)
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識(shí)別方法。
教學(xué)重點(diǎn)
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)難點(diǎn):
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)時(shí)間:一課時(shí)。
教學(xué)用具:投影儀等。
教學(xué)過(guò)程:
一.復(fù)習(xí)提問(wèn)
1.什么是整式?什么是單項(xiàng)式?什么是多項(xiàng)式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
、 ⑥ ⑦
二.新課講解:
設(shè)問(wèn):不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的`式子叫做分式,其中A和B均為整式,B中含有字母。
練習(xí):下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
強(qiáng)調(diào):(6)+4帶有是無(wú)理式,不是整式,故不是分式。
2.小結(jié):對(duì)整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習(xí):課后練習(xí)P6練習(xí)1、2題
設(shè)問(wèn):(讓學(xué)生看課本上P5“思考”部分,然后回答問(wèn)題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
。ò鍟忸}過(guò)程。)
3.小結(jié):分式是否有意義的識(shí)別方法:當(dāng)分式的分母為零時(shí),分式無(wú)意義;當(dāng)分式的分母不等于零時(shí),分式有意義。
增加例題:當(dāng)x取什么值時(shí),分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當(dāng)x≠±2時(shí),分式有意義。
設(shè)問(wèn):什么時(shí)候分式的值為零呢?
例:
解:當(dāng) ① 分式的值為零
八年級(jí)數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來(lái)反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說(shuō),兩個(gè)時(shí)段的氣溫情況沒(méi)有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說(shuō)說(shuō)你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的`最大值減去最小值所得到的差來(lái)反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒(méi)有相應(yīng)的例題,教材P152習(xí)題分析
問(wèn)題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說(shuō)明該村貧富差距較大.問(wèn)題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問(wèn)題3答案并不唯一,合理即可。
八年級(jí)數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過(guò)本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過(guò)學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過(guò)程
。ㄒ唬┨釂(wèn)
1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?
這些問(wèn)題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問(wèn)題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
(二)平方根概念
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語(yǔ)言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的`平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=—4
學(xué)生思考后,得到結(jié)論此題無(wú)答案。反問(wèn)學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒(méi)有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒(méi)有平方根。
。ㄋ模╅_平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運(yùn)算與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
。ㄎ澹┢椒礁谋硎痉椒
一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來(lái)記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。
練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說(shuō)出上式的讀法。
例1。下列各數(shù)的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識(shí)。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計(jì)
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動(dòng)
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級(jí)數(shù)學(xué)教案 篇5
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.
二、類比異分母分?jǐn)?shù)的加減及通分過(guò)程,熟練掌握異分母分式的加減及通分過(guò)程與方法.
數(shù)學(xué)思考
在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問(wèn)題能力.
解決問(wèn)題
一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.
二、會(huì)解決與分式的加減有關(guān)的簡(jiǎn)單實(shí)際問(wèn)題.
三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.
情感態(tài)度
通過(guò)師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).
重點(diǎn)
分式的加減法.
難點(diǎn)
異分母分式的加減法及簡(jiǎn)單的分式混合運(yùn)算.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的
活動(dòng)1:?jiǎn)栴}引入
活動(dòng)2:學(xué)習(xí)同分母分式的加減
活動(dòng)3:探究異分母分式的加減
活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則
活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)
向?qū)W生提出兩個(gè)實(shí)際問(wèn)題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問(wèn)題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.
類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的.加減的方法并進(jìn)行簡(jiǎn)單運(yùn)算.
回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.
通過(guò)以上探究過(guò)程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過(guò)分式在物理學(xué)的應(yīng)用及簡(jiǎn)單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.
通過(guò)練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情境
師生行為
設(shè)計(jì)意圖
。刍顒(dòng)1]
1.問(wèn)題一:比較電腦與手抄的錄入時(shí)間.
2.問(wèn)題二;幫幫小明算算時(shí)間
所需時(shí)間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過(guò)課件展示問(wèn)題.學(xué)生積極動(dòng)腦解決問(wèn)題,提出困惑:
分式如何進(jìn)行加減?
通過(guò)實(shí)際問(wèn)題中要用到分式的加減,從而提出問(wèn)題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.
[活動(dòng)2]
1.提出小學(xué)數(shù)學(xué)中一道簡(jiǎn)單的分?jǐn)?shù)加法題目.
2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過(guò)課件出兩個(gè)小練習(xí).
教師提出問(wèn)題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.
學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.
通過(guò)例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).
由兩個(gè)學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).
運(yùn)用類比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).
師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過(guò)思考學(xué)會(huì)新知識(shí),提高自信心.
讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.
。刍顒(dòng)3]
1.教師以練習(xí)的形式通過(guò)“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.
教師通過(guò)課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.
由學(xué)生主動(dòng)提出解決問(wèn)題的方法,從而激發(fā)了學(xué)生探究問(wèn)題的興趣.
通過(guò)學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),體會(huì)學(xué)習(xí)的樂(lè)趣.
。刍顒(dòng)4]
。保谡Z(yǔ)言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過(guò)課件出4個(gè)小練習(xí).
4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
。担處熓褂谜n件展示[例4]
教師提出要求,由學(xué)生說(shuō)出分式加減法則的字母表示形式.
通過(guò)例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過(guò)程.
教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡(jiǎn)公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問(wèn)題,由學(xué)生自己完成.
教師引導(dǎo)學(xué)生尋找解決問(wèn)題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.
分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).
由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語(yǔ)言的精練.
讓學(xué)生體會(huì)運(yùn)用的公式解決問(wèn)題的過(guò)程.
鍛煉學(xué)生運(yùn)用法則解決問(wèn)題的能力,既準(zhǔn)確又有速度.
提高學(xué)生的計(jì)算能力.
通過(guò)分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.
提高學(xué)生綜合應(yīng)用知識(shí)的能力.
。刍顒(dòng)5]
1.教師通過(guò)課件出2個(gè)分式混合運(yùn)算的小練習(xí).
2.總結(jié):
a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說(shuō)一說(shuō)嗎?
b)⑴方法思路;
c)⑵計(jì)算中的主意事項(xiàng);
d)⑶結(jié)果要化簡(jiǎn).
3.作業(yè):
a)教科書習(xí)題16.2第4、5、6題.
學(xué)生練習(xí)、鞏固.
教師巡視指導(dǎo).
學(xué)生完成、交流.,師生評(píng)價(jià).
教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.
教師布置作業(yè).
鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.
提高學(xué)生歸納總結(jié)的能力.
八年級(jí)數(shù)學(xué)教案 篇6
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn)
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn)
簡(jiǎn)潔的邏輯推理。
教學(xué)過(guò)程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識(shí),通過(guò)推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的`中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問(wèn)題2:求1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的打,錯(cuò)的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題.
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)數(shù)學(xué)教案【熱門】12-03
【推薦】八年級(jí)數(shù)學(xué)教案12-05