天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-23 10:21:07 八年級數(shù)學教案 我要投稿

精選八年級數(shù)學教案范文5篇

  作為一名無私奉獻的老師,可能需要進行教案編寫工作,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那么寫教案需要注意哪些問題呢?下面是小編為大家收集的八年級數(shù)學教案5篇,歡迎大家分享。

精選八年級數(shù)學教案范文5篇

八年級數(shù)學教案 篇1

  教學目標:

  1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

  2.掌握整數(shù)指數(shù)冪的運算性質(zhì).

  3.會用科學計數(shù)法表示小于1的數(shù).

  教學重點:

  掌握整數(shù)指數(shù)冪的運算性質(zhì).

  難點:

  會用科學計數(shù)法表示小于1的數(shù).

  情感態(tài)度與價值觀:

  通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.

  教學過程:

  一、課堂引入

  1.回憶正整數(shù)指數(shù)冪的運算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));

  2.回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0 = 1.

  3.你還記得1納米=10?9米,即1納米=米嗎?

  4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的`運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

  二、總結(jié): 一般地,數(shù)學中規(guī)定: 當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學生由特殊情形入手,來看這條性質(zhì)是否成立. 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.

  三、科學記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1.

八年級數(shù)學教案 篇2

  一、教學目標

 。ㄒ唬⒅R與技能:

 。1)使學生了解因式分解的意義,理解因式分解的概念。

  (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

 。ǘ、過程與方法:

 。1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

  (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

 。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

  (三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

  二、教學重點和難點

  重點:因式分解的概念及提公因式法。

  難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學過程

  教學環(huán)節(jié):

  活動1:復習引入

  看誰算得快:用簡便方法計算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設計意圖:

  如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

  活動2:導入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設計意圖:

  引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

  活動3:探究新知

  看誰算得準:

  計算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

 。3)(+4)(-4)= ;

  (4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

  (1)a+b+c= ;

  (2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計算上,學生通過對第一組式子的`觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學教案 篇3

  一、創(chuàng)設情境

  1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).

  3.平面直角坐標系中,x軸、y軸上的.點的坐標有什么特征?

  4.在平面直角坐標系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.

  2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.

  分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.

  解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.

  過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.

  三、實踐應用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.

  解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點坐標,根據(jù)x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?

八年級數(shù)學教案 篇4

  一、知識與技能

  1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關系,加深對函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對兩個變量之間相依關系的討論,培養(yǎng)學生的辨別唯物主義觀點.

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學生的抽象思維能力,提高數(shù)學化意識.

  三、情感態(tài)度與價值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學學習的重要性,提高學生的學習數(shù)學的興趣.

  2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.

  教學重點:理解和領會反比例函數(shù)的概念.

  教學難點:領悟反比例的概念.

  教學過程

  一、創(chuàng)設情境,導入新課

  活動1

  問題:下列問題中,變量間的對應關系可用怎樣的函數(shù)關系式表示?這些函數(shù)有什么共同特點?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關系為什么可以看著函數(shù),了解所討論的函數(shù)的表達形式.

  教師組織學生討論,提問學生,師生互動.

  在此活動中老師應重點關注學生:

 、倌芊穹e極主動地合作交流.

  ②能否用語言說明兩個變量間的關系.

 、勰芊窳私馑懻摰暮瘮(shù)表達形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

 。唬2)

 。唬3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應關系可用這樣的函數(shù)式表示?

  (1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

  (3)一個物體重100牛頓,物體對地面的.壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學生先獨立思考,在進行全班交流.

  教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:

  (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領會函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果兩個變量x,y之間的關系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學生先進行獨立思考,再進行全班交流.教師提出問題,關注學生思考.此活動中教師應重點關注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

  ②學生能否順利抽象反比例函數(shù)的模型;

 、蹖W生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當x=2時,y=6

  (1)寫出y與x的函數(shù)關系式:

  (2)求當x=4時,y的值.

  師生行為:

  學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應重點關注:

  ①學生能否領會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因為y是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設

  ,因為x=2時,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

  (1)寫出y與x之間的函數(shù)關系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

  (1)寫出這個反比例函數(shù)的表達式;

  (2)根據(jù)函數(shù)表達式完成上表.

  學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”.

  四、課時小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學對象.反比例函數(shù)具有豐富的數(shù)學含義,通過舉例、說理、討論等活動,感知數(shù)學眼光,審視某些實際現(xiàn)象.

八年級數(shù)學教案 篇5

  教學任務分析

  教學目標

  知識技能

  探索并掌握梯形的有關概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

  數(shù)學思考

  能夠運用梯形的有關概念和性質(zhì)進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想.

  情感態(tài)度

  在應用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習慣, 在數(shù)學學習活動中獲得成功的體驗.

  重點

  等腰梯形的性質(zhì)及其應用.

  難點

  解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

  教學流程安排

  活動流程圖

  活動的內(nèi)容和目的

  活動1想一想

  活動2說一說

  活動3畫一畫

  活動4做—做

  活動5練一練

  活動6理一理

  觀察梯形圖片,引入本節(jié)課的學習內(nèi)容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關系.

  探究得到等腰梯形的性質(zhì).

  通過解決具體問題,尋找解決梯形問題的方法.

  通過整理回顧,鞏固知識、提高能力、滲透思想.

  教學過程設計

  問題與情景

  師生行為

  設計意圖

  [活動1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

  演示圖片,學生欣賞.

  結(jié)合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

  由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.

  [活動2]

  梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

  學生根據(jù)梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學生歸納、總結(jié)的`能力.

  問題與情景

  師生行為

  設計意圖

  一些基本概念

 。1)(如圖):底、腰、高.

 。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一個角是直角的梯形叫做直角梯形.

  學生在小學已經(jīng)對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調(diào):①梯形與四邊形的關系;

 、谏稀⑾碌椎母拍钍怯傻椎拈L短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質(zhì)做準備.

  [活動3]

  畫一畫

  在下列所給圖中的每個三角形中畫一條線段,

 。1)怎樣畫才能得到一個梯形?

 。2)在哪些三角形中,能夠得到一個等腰梯形?

  在學生獨立探究的基礎上,學生分組交流.

  教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

  本次活動教師應重點關注:

  (1)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

  (2)學生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

  (3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質(zhì)疑,從中獲益.

  等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎.

  問題與情景

  師生行為

  設計意圖

  [活動4]

  做—做

  探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).

  在一張方格紙上作一個等腰梯形,連接兩條對角線.

 。1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

  (2)這個等腰梯形的兩條對角線的長度有什么關系?

  學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結(jié)論.

  針對不同認識水平的學生,教師指導學生活動.

  師生共同歸納:

 、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.

 、诘妊菪蝺裳嗟龋

  ③等腰梯形同一底上的兩個角相等.

 、艿妊菪蔚膬蓷l對角線相等.

  教學中要注意引導學生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.

  [活動5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長.

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質(zhì)的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

  分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

  其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內(nèi)容很有幫助.

  問題與情景

  師生行為

  設計意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據(jù)學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

  [活動6]

  1.小結(jié)

  2.布置作業(yè)

 。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

 。2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

  (3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結(jié)論)

  師生歸納總結(jié):

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

 。2)“作高”:使兩腰在兩個直角三角形中(圖2);

 。3)“延腰”:構(gòu)造具有公共角的兩個等腰三角形(圖3);

 。4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

 。5)“等積變形”,連結(jié)梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構(gòu)成三角形(圖5).

  盡量多地讓學生參與發(fā)言是一個交流的過程.

  梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

  學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

初中八年級數(shù)學教案11-03

八年級的數(shù)學教案15篇12-14

【熱門】八年級數(shù)學教案11-29

八年級數(shù)學教案【熱】11-29

八年級數(shù)學教案【薦】12-06

【熱】八年級數(shù)學教案12-07

八年級上冊數(shù)學教案11-09

人教版八年級數(shù)學教案11-04