天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-23 02:29:03 八年級數(shù)學教案 我要投稿

關于八年級數(shù)學教案模板匯編8篇

  作為一名教學工作者,通常需要準備好一份教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的八年級數(shù)學教案8篇,僅供參考,希望能夠幫助到大家。

關于八年級數(shù)學教案模板匯編8篇

八年級數(shù)學教案 篇1

  教學目標

  知識與技能

  用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.

  過程與方法

  1.通過設置問題串,讓學生體會分析復雜問題的思考方法.

  2.讓學生進一步經(jīng)歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界 的有效數(shù)學模型.

  情感態(tài)度與價值觀

  在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養(yǎng)學生的團隊精神.

  教學重點

  1.初步體會列方程組解決實際問題的'步驟.

  2.學會用圖表 分析較復雜的數(shù)量關系問題。

  教學難點

  將實際問題轉化 成二元一次方程組的數(shù)學模型;會用圖表分析數(shù) 量關系。

  教學準備:

  教具:教材,課件,電腦(視頻播放器)

  學具:教材,練習本

  教學過程

  第一環(huán)節(jié):復習提問(5分鐘,學生口答)

  內(nèi)容:填空:

  (1)一個兩位數(shù),個位數(shù)字是 ,十位數(shù)字是 ,則這個兩位數(shù)用代數(shù)式表示為 ;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為 .

  (2)一個兩位數(shù),個位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為 .

  (3)有兩個兩位數(shù) 和 ,如果將 放在 的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為 .

  第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)

  內(nèi)容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數(shù)嗎?

  第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決 問題)

  內(nèi)容:例1

  兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù).

  學生先獨立思考例1,在此基礎上,教師根據(jù)學生思考情況組織交流與討論.

  第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)

  內(nèi)容:練習

  1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結果是23;這個兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個兩位數(shù)是多少?

  2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù).

  第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)

  內(nèi)容:

  1.教師提問:本節(jié)課我們學習了那些內(nèi)容,對這些內(nèi)容你有什么體會和想法?請與同伴交流.

  2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.

  第 六環(huán)節(jié):布置作業(yè)

  內(nèi)容:習題7.6

  A組(優(yōu)等生) 2,3,4

  B組(中等生)2、3

  C組(后三分之一生)2

八年級數(shù)學教案 篇2

  一、教學目標

  1.使學生理解并掌握分式的概念,了解有理式的概念;

  2.使學生能夠求出分式有意義的條件;

  3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉化的思想方法解決問題的能力;

  4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.

  二、重點、難點、疑點及解決辦法

  1.教學重點和難點 明確分式的分母不為零.

  2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解.

  三、教學過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

  用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的'分子,叫做分式的分母.

  (2)由學生舉幾個分式的例子.

  (3)學生小結分式的概念中應注意的問題.

 、俜帜钢泻凶帜.

  ②如同分數(shù)一樣,分式的分母不能為零.

  (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

  2.有理式的分類

  請學生類比有理數(shù)的分類為有理式分類:

  例1 當取何值時,下列分式有意義?

  (1);

  解:由分母得.

  ∴當時,原分式有意義.

  (2);

  解:由分母得.

  ∴當時,原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實數(shù)時,原分式都有意義.

  (4).

  解:由分母得.

  ∴當且時,原分式有意義.

  思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

  例2 當取何值時,下列分式的值為零?

  (1);

  解:由分子得.

  而當時,分母.

  ∴當時,原分式值為零.

  小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當時,分母,分式無意義.

  當時,分母.

  ∴當時,原分式值為零.

  (3);

  解:由分子得.

  而當時,分母.

  當時,分母.

  ∴當或時,原分式值都為零.

  (4).

  解:由分子得.

  而當時,,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結、擴展

  1.分式與分數(shù)的區(qū)別.

  2.分式何時有意義?

  3.分式何時值為零?

  (五)隨堂練習

  1.填空題:

  (1)當時,分式的值為零

  (2)當時,分式的值為零

  (3)當時,分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設計

  課題 例1

  1.定義例2

  2.有理式分類

八年級數(shù)學教案 篇3

  一、知識與技能

  1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關系,加深對函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對兩個變量之間相依關系的討論,培養(yǎng)學生的辨別唯物主義觀點.

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學生的抽象思維能力,提高數(shù)學化意識.

  三、情感態(tài)度與價值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學學習的重要性,提高學生的學習數(shù)學的興趣.

  2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.

  教學重點:理解和領會反比例函數(shù)的概念.

  教學難點:領悟反比例的概念.

  教學過程

  一、創(chuàng)設情境,導入新課

  活動1

  問題:下列問題中,變量間的對應關系可用怎樣的函數(shù)關系式表示?這些函數(shù)有什么共同特點?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關系為什么可以看著函數(shù),了解所討論的函數(shù)的`表達形式.

  教師組織學生討論,提問學生,師生互動.

  在此活動中老師應重點關注學生:

 、倌芊穹e極主動地合作交流.

  ②能否用語言說明兩個變量間的關系.

 、勰芊窳私馑懻摰暮瘮(shù)表達形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

 。唬2)

 ;(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應關系可用這樣的函數(shù)式表示?

  (1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

  (3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學生先獨立思考,在進行全班交流.

  教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:

  (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領會函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果兩個變量x,y之間的關系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學生先進行獨立思考,再進行全班交流.教師提出問題,關注學生思考.此活動中教師應重點關注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

  ②學生能否順利抽象反比例函數(shù)的模型;

  ③學生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當x=2時,y=6

  (1)寫出y與x的函數(shù)關系式:

  (2)求當x=4時,y的值.

  師生行為:

  學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應重點關注:

 、賹W生能否領會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

  ②學生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因為y是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設

  ,因為x=2時,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

  (1)寫出y與x之間的函數(shù)關系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

  (1)寫出這個反比例函數(shù)的表達式;

  (2)根據(jù)函數(shù)表達式完成上表.

  學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”.

  四、課時小結

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學對象.反比例函數(shù)具有豐富的數(shù)學含義,通過舉例、說理、討論等活動,感知數(shù)學眼光,審視某些實際現(xiàn)象.

八年級數(shù)學教案 篇4

  教學目標

  1、知識與技能目標

  學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

  2、過程與方法

  (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.

  (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.

  3、情感態(tài)度與價值觀

  (1)通過有趣的問題提高學習數(shù)學的興趣.

  (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性.

  教學重點:

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

  教學難點:

利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

  教學準備:

多媒體

  教學過程:

  第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)

  情景:

  如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

  第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)

  學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算.

  學生匯總了四種方案:

  (1) (2) (3)(4)

  學生很容易算出:情形(1)中A→B的'路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

  學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.

  如圖:

  (1)中A→B的路線長為:AA’+d;

 。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;

  (3)中A→B的路線長為:AO+OB>AB;

 。ǎ矗┲蠥→B的路線長為:AB.

  得出結論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

  第三環(huán)節(jié):做一做(7分鐘,學生合作探究)

  教材23頁

  李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

 。1)你能替他想辦法完成任務嗎?

 。2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

 。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)

  1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

  2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

  3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

  第五環(huán)節(jié) 課堂小結(3分鐘,師生問答)

  內(nèi)容:

  1、如何利用勾股定理及逆定理解決最短路程問題?

  第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)

  內(nèi)容:

  作業(yè):1.課本習題1.5第1,2,3題.

  要求:A組(學優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

  板書設計:

  教學反思:

八年級數(shù)學教案 篇5

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  二、例習題分析

  例1(補充)下列各句判定矩形的說法是否正確?為什么?

  (1)有一個角是直角的四邊形是矩形;(×)

  (2)有四個角是直角的四邊形是矩形;(√)

  (3)四個角都相等的'四邊形是矩形;(√)

  (4)對角線相等的四邊形是矩形;(×)

  (5)對角線相等且互相垂直的四邊形是矩形;(×)

  (6)對角線互相平分且相等的四邊形是矩形;(√)

  (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

 。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的條件不滿足三個的肯定不是矩形;

 。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.

  例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

八年級數(shù)學教案 篇6

  學習目標:

  1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質(zhì).

  2、經(jīng)歷探索軸對稱的性質(zhì)的活動過程 ,積累數(shù)學活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.

  3、利用軸對稱的基本性質(zhì)解決實際問題。

  學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質(zhì)。

  學習難點:軸對稱的性質(zhì)的理解和拓展運用。

  學習過程 :

  一、探索活動

  如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.

  兩針孔A、A和線段AA與折痕MN之間有什么關系?

  1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的'圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.

  2、那么 直線MN為什么會垂直平分線段AA呢?

  3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).

  例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.

  4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?

  5.如圖,再在紙上任畫一點C,并仿照上面進行操作.

  (1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?

  (2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?

  (3)軸對稱有哪些性質(zhì)?

  6.軸對稱的性質(zhì):

  (1)成軸對稱的兩個圖形全等.

  (2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.

  二、例題講解

  例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .

  (2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.

  (3)AE與BF平行嗎?為什么?

  (4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?

  (5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?

八年級數(shù)學教案 篇7

  知識結構:

  重點與難點分析:

  本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經(jīng)常混淆,幫助學生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

  教法建議:

  本節(jié)課教學方法主要是“以學生為主體的討論探索法”。在數(shù)學教學中要避免過多告訴學生現(xiàn)成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數(shù)學的內(nèi)在規(guī)律。具體說明如下:

  (1)參與探索發(fā)現(xiàn),領略知識形成過程

  學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發(fā)言.最后找一名學生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領神會。

  (2)采用“類比”的學習方法,獲取知識。

  由性質(zhì)定理的學習,我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的'推論板書出來。如果學生提到的不完整,教師可以做適當?shù)狞c撥引導。

  (3)總結,形成知識結構

  為了使學生對本節(jié)課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

  一.教學目標:

  1.使學生掌握等腰三角形的判定定理及其推論;

  2.掌握等腰三角形判定定理的運用;

  3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;

  5.通過知識的縱橫遷移感受數(shù)學的辯證特征.

  二.教學重點:等腰三角形的判定定理

  三.教學難點:性質(zhì)與判定的區(qū)別

  四.教學用具:直尺,微機

  五.教學方法:以學生為主體的討論探索法

  六.教學過程:

  1、新課背景知識復習

  (1)請同學們說出互逆命題和互逆定理的概念

  估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

  啟發(fā)學生用自己的語言敘述上述結論,教師稍加整理后給出規(guī)范敘述:

  1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學生說出已知、求證,使學生進一步熟悉文字轉化為數(shù)學語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導學生分析:

  聯(lián)想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結論,不要與性質(zhì)定理混淆.

  (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

  (3)判定定理得到的結論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關系.

  2.推論1:三個角都相等的三角形是等邊三角形.

  推論2:有一個角等于60°的等腰三角形是等邊三角形.

  要讓學生自己推證這兩條推論.

  小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應用舉例

  例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

  分析:讓學生畫圖,寫出已知求證,啟發(fā)學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學生板演即可.

  補充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時要突出邊角轉換環(huán)節(jié),要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結:求線段相等一般在三角形中求解,添加適當?shù)妮o助線構造三角形,找出邊角關系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

  證明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結:

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習

  教材 P.75中1、2、3.

  八.作業(yè)

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書設計

八年級數(shù)學教案 篇8

  教學目標

  一、教學知識點:

  1.旋轉的定義.2.旋轉的基本性質(zhì).

  二、能力訓練要求:

  1.通過具體實例認識旋轉,理解旋轉的基本涵義.

  2.探索旋轉的基本性質(zhì),理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質(zhì).

  三、情感與價值觀要求

  1.經(jīng)歷對生活中與旋轉現(xiàn)象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

  2.通過學習使學生能用數(shù)學的眼光看待生活中的有關問題,進一步發(fā)展學生的數(shù)學觀.

  教學重點:旋轉的基本性質(zhì).

  教學難點:探索旋轉的基本性質(zhì).

  教學方法:

  1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

  2、采用多媒體課件輔助教學。

  教學過程:

  一.巧設情景問題,引入課題

  日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉動呢?

  1.在這些轉動的現(xiàn)象中,它們都是繞著一個點轉動的.

  2.每個物體的轉動都是向同一個方向轉動.

  3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節(jié)課我們就來探討生活中的旋轉.

  二.講授新課

  在數(shù)學中,如何定義旋轉呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

  (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

  (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經(jīng)過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質(zhì)呢?

  答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

  因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

  由此我們得到了旋轉的基本性質(zhì):經(jīng)過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

  [例1](課本68頁例1)

 。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉過的度數(shù)是6°,這樣20分時,分針逆轉的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習

  課本P69隨堂練習.

  1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結

  五.課后作業(yè):課本P69習題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉規(guī)律.

  結果:旋轉現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的'三個“角”)繞中心位置,按照同一方向連續(xù)旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

  過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

  結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

  板書設計:

  教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

八年級數(shù)學教案【熱門】12-03

【精】八年級數(shù)學教案12-04

八年級數(shù)學教案【精】12-04

八年級數(shù)學教案【薦】12-06

【推薦】八年級數(shù)學教案12-05

八年級數(shù)學教案【推薦】12-04

【熱】八年級數(shù)學教案12-07

八年級下冊數(shù)學教案01-01