有關(guān)八年級(jí)數(shù)學(xué)教案模板匯總9篇
作為一位杰出的老師,時(shí)常需要用到教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那要怎么寫好教案呢?下面是小編整理的八年級(jí)數(shù)學(xué)教案9篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)教案 篇1
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識(shí)與技能
1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。
情感態(tài)度與價(jià)值觀
通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的'位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對(duì)的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級(jí)數(shù)學(xué)教案 篇2
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的.性質(zhì)的活動(dòng)過程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點(diǎn)B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級(jí)數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):
、伲趯(shí)踐操作過程中,逐步探索圖形之間的平移關(guān)系;
②,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過對(duì)“基本圖案”的`平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計(jì):
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個(gè)圖案有什么特點(diǎn)?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個(gè)正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺(tái)上給大家講解。
氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)目標(biāo)
知識(shí)與技能
用二元一次方程組解決有趣場(chǎng)景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實(shí)際問題的一般步驟.
過程與方法
1.通過設(shè)置問題串,讓學(xué)生體會(huì)分析復(fù)雜問題的思考方法.
2.讓學(xué)生進(jìn)一步經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界 的有效數(shù)學(xué)模型.
情感態(tài)度與價(jià)值觀
在學(xué)習(xí)過程中讓學(xué)生體驗(yàn)把復(fù)雜問題化為簡(jiǎn)單問題的策略,體驗(yàn)成功感,同時(shí)培養(yǎng)學(xué)生克服困難的意志和勇氣, 樹立自信心,并鼓勵(lì)學(xué)生合作 交流,培養(yǎng)學(xué)生的團(tuán)隊(duì)精神.
教學(xué)重點(diǎn)
1.初步體會(huì)列方程組解決實(shí)際問題的'步驟.
2.學(xué)會(huì)用圖表 分析較復(fù)雜的數(shù)量關(guān)系問題。
教學(xué)難點(diǎn)
將實(shí)際問題轉(zhuǎn)化 成二元一次方程組的數(shù)學(xué)模型;會(huì)用圖表分析數(shù) 量關(guān)系。
教學(xué)準(zhǔn)備:
教具:教材,課件,電腦(視頻播放器)
學(xué)具:教材,練習(xí)本
教學(xué)過程
第一環(huán)節(jié):復(fù)習(xí)提問(5分鐘,學(xué)生口答)
內(nèi)容:填空:
(1)一個(gè)兩位數(shù),個(gè)位數(shù)字是 ,十位數(shù)字是 ,則這個(gè)兩位數(shù)用代數(shù)式表示為 ;若交換個(gè)位和十位上的數(shù)字得到一個(gè)新的兩位數(shù),用代數(shù)式表示為 .
(2)一個(gè)兩位數(shù),個(gè)位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個(gè)0,就得到一個(gè)三位數(shù),這個(gè)三位數(shù)用代數(shù)式可以表示為 .
(3)有兩個(gè)兩位數(shù) 和 ,如果將 放在 的左邊,就得到一個(gè)四位數(shù),那么這個(gè)四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個(gè)新的四位數(shù),那么這個(gè)四位數(shù)用代數(shù)式可表示為 .
第二環(huán)節(jié):情境引入(10分鐘,學(xué)生動(dòng)腦思考,全班交流)
內(nèi)容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時(shí)看到的里程情況.你能 確定小明在12:00時(shí)看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學(xué)習(xí)(10分鐘,小組討論,找等量關(guān)系,解決 問題)
內(nèi)容:例1
兩個(gè)兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個(gè)四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個(gè)四位數(shù).已知前一個(gè)四位數(shù)比后一個(gè)四位數(shù)大2178,求這兩個(gè)兩位數(shù).
學(xué)生先獨(dú)立思考例1,在此基礎(chǔ)上,教師根據(jù)學(xué)生思考情況組織交流與討論.
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生嘗試獨(dú)立解決問題,全班交流)
內(nèi)容:練習(xí)
1.一個(gè)兩位數(shù),減去它的各位數(shù)字之和的3倍,結(jié)果是23;這個(gè)兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個(gè)兩位數(shù)是多少?
2.一個(gè)兩位數(shù)是另一個(gè)兩位數(shù)的3倍,如果把這個(gè)兩位數(shù)放在另一個(gè)兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個(gè)兩位數(shù).
第五環(huán)節(jié):課堂小結(jié)(5分鐘,教師引導(dǎo)學(xué)生總結(jié)一般步驟)
內(nèi)容:
1.教師提問:本節(jié)課我們學(xué)習(xí)了那些內(nèi)容,對(duì)這些內(nèi)容你有什么體會(huì)和想法?請(qǐng)與同伴交流.
2.師生互相交流總結(jié)出列方程(組)解決實(shí)際問題的一般步驟.
第 六環(huán)節(jié):布置作業(yè)
內(nèi)容:習(xí)題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級(jí)數(shù)學(xué)教案 篇5
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的.氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問題3答案并不唯一,合理即可。
八年級(jí)數(shù)學(xué)教案 篇6
課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯(cuò)答: B
正解: C
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯(cuò)解 :B
正解:D
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。
錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。
錯(cuò)解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。
錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯(cuò)因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯(cuò)解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。
。1)求k的取值范圍;
(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
。2)存在。
如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。
∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。
解:上面解法錯(cuò)在如下兩個(gè)方面:
(1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
(2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?
解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=
(2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。
又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們?cè)谇蠼庥嘘P(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的.存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。
3、條件多面時(shí)(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。
求證:關(guān)于x的方程
(m-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個(gè)根為1,求m的值。
。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請(qǐng)說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級(jí)數(shù)學(xué)教案 篇7
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
。1)請(qǐng)你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來探索這個(gè)問題。
探索活動(dòng)
通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動(dòng)
算一算
把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的'波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
。4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
方差的簡(jiǎn)便公式:
推導(dǎo):以3個(gè)數(shù)為例
(二)標(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來衡量一組數(shù)據(jù)的波動(dòng)大小的重要的量.
注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
八年級(jí)數(shù)學(xué)教案 篇8
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問題能力和計(jì)算能力.
解決問題
通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
等腰梯形的性質(zhì)及其應(yīng)用.
難點(diǎn)
解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)的內(nèi)容和目的
活動(dòng)1想一想
活動(dòng)2說一說
活動(dòng)3畫一畫
活動(dòng)4做—做
活動(dòng)5練一練
活動(dòng)6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識(shí)、提高能力、滲透思想.
教學(xué)過程設(shè)計(jì)
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.
由現(xiàn)實(shí)中實(shí)際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.
[活動(dòng)2]
梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的`區(qū)別和聯(lián)系.
通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.
問題與情景
師生行為
設(shè)計(jì)意圖
一些基本概念
。1)(如圖):底、腰、高.
。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;
、谏、下底的概念是由底的長(zhǎng)短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動(dòng)3]
畫一畫
在下列所給圖中的每個(gè)三角形中畫一條線段,
。1)怎樣畫才能得到一個(gè)梯形?
。2)在哪些三角形中,能夠得到一個(gè)等腰梯形?
在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動(dòng),指導(dǎo)、傾聽學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:
(1)學(xué)生在活動(dòng)過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
(3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見解,傾聽他人的意見,對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開展探究奠定了基礎(chǔ).
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問題的思想).
在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.
。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;
(2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗(yàn)證、歸納結(jié)論.
針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).
師生共同歸納:
①等腰梯形是軸對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.
②等腰梯形兩腰相等.
、鄣妊菪瓮坏咨系膬蓚(gè)角相等.
、艿妊菪蔚膬蓷l對(duì)角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.
[活動(dòng)5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長(zhǎng).
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽,同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).
分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問題.
其方法是:平移一腰,過點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.
問題與情景
師生行為
設(shè)計(jì)意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見識(shí).
[活動(dòng)6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.
。2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問題常用的方法:
(1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);
(2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);
(3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);
(4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);
(5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過程.
梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時(shí)查漏補(bǔ)缺.
八年級(jí)數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;
3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話法
教學(xué)過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的.一個(gè)重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)的數(shù)學(xué)教案15篇12-14
【熱門】八年級(jí)數(shù)學(xué)教案11-29