關于人教版六年級下冊數(shù)學教案匯總8篇
作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么寫教案需要注意哪些問題呢?下面是小編為大家整理的人教版六年級下冊數(shù)學教案8篇,僅供參考,希望能夠幫助到大家。
人教版六年級下冊數(shù)學教案 篇1
教學內(nèi)容:
教材第15~16頁的例4和第16頁的試一試、練一練,完成練習三第1~3題。
教學目標:
1.結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。
2.經(jīng)歷類比猜想驗證說明的探索圓柱體積的計算方法的進程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3.引導學生探索和解決問題,滲透、體驗知識間相互轉化的思想方法。
重點難點:
掌握圓柱體積公式的推導過程。
教學資源:
PPT課件 圓柱等分模型
教學過程:
一、聯(lián)系舊知,設疑激趣,導入新課。
1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。
2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?
啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關?怎么算?
3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。
二、動手操作,探索新知,教學例4
1.觀察比較
引導學生觀察例4的三個立體,提問
、胚@三個立體的底面積和高都相等,它們的體積有什么關系?
⑵長方體和正方體的體積一定相等嗎?為什么?
、菆A柱的體積與長方體和正方體的體積可能相等嗎?為什么?
2.實驗操作
、耪勗挘捍蠹叶颊J為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗證呢?讓學生在小組中說說自己的`想法。
提醒:圓的面積公式是怎么推導出來的?我們能不能將圓柱轉化成長方體呢?
、铺岢鲆螅耗隳芟朕k法把圓柱轉化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準備好的圓柱,操作一下。
⑶討論交流:如果把圓柱的底面平均分成16份,切開后能否拼成一個近似的長方體?
操作教具,讓學生觀察。
引導想像:如果把底面平均分的份數(shù)越來越多,結果會怎么樣?
演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學生清楚地認識到:拼成的立體會越來越接近長方體。
3.推出公式
、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關系?
指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。
、葡胍幌耄涸鯓忧髨A柱的體積?為什么?
根據(jù)學生的回答小結并板書圓柱的體積公式
圓柱的體積=底面積高
、且龑в米帜腹奖硎緢A柱的體積公式:V=sh
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
三、分層練習,發(fā)散思維,教學試一試
⑴讓學生列式解答后交流算法。
⑵討論:知道什么條件就一定能算出圓柱的體積了?分別怎么算?
(s和h,r和h,d和h,c和h)
四、鞏固拓展練習
1.做練一練第1題。
、耪f一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?
⑵各自練習,并指名板演。
、菍φ瞻逖,說說計算過程。
2.做練一練第2題。
已知底面周長和高,該怎么求它的體積呢?引導學生根據(jù)底面周長求出底面積。
五、小結
這節(jié)課我們學習了什么?有哪些收獲?還有什么疑問?
六、作業(yè)
練習三第1~3題。
人教版六年級下冊數(shù)學教案 篇2
教學目標:
1、學生通過小組合作學習對單元知識進行概括,建立知識結構;
2、會解決實際問題;
3、歸納整理的能力及解決問題的能力;
4、積極探索、團結協(xié)作的精神,獲得收獲的成功感。
教學重點:運用所學知識解決實際問題。、
教學難點:歸納整理,形成知識脈絡。
教學方法:引發(fā)矛盾,引入課題小組合作,歸納整理多元評價,建構知識應用實際,解決問題強化總結,拓展遷移。
教學過程:
一、引發(fā)矛盾,引入課題
猜一猜:老師今年多少歲了?
[投影]老師年齡數(shù)的十位上是最小的奇數(shù)型質(zhì)數(shù),個位上的數(shù)既不是質(zhì)數(shù)也不是合數(shù)。你們說老師今年多少歲了?
猜這個謎語,我們需要哪些數(shù)學知識呢?
說得有理,我們學過有關數(shù)的知識很多,就像剛才我們在猜謎時就用到了數(shù)的整除中的一些知識。今天我們就一起來整理復習數(shù)的整除,板書:數(shù)的整除復習
齊讀課題,你想到什么?
那好吧,我們就開始復習。
二、梳理知識,形成脈絡
1、 集中呈現(xiàn)
現(xiàn)在請大家以小組為學習單位,按照你們的想法,把學過的數(shù)
的整除這部分知識整理在下發(fā)的紙上。(請大家認真討論商量,并由組長記錄)待會兒我們要比一比,看哪個小組整理的既完整,又科學合理。巡視
2、 逐個梳理
1)小組活動:請大家在小組中,每人挑1至2個名詞說說意思。
2)全班交流(根據(jù)學生的發(fā)言提示隨意在黑板上貼出各個名詞)
3)整理完善知識結構
在數(shù)的整除這部分首先學習的是整除,這是為什么?請大家討論一下,再推薦代表發(fā)言。(巡視,參與學生討論。)
組織學生匯報交流、討論。
提示:整除是基礎,整除前提下產(chǎn)生了約數(shù)與倍數(shù),它們是相互依存的關系。(逐步引出公倍數(shù)、公約數(shù)、最小公倍數(shù)、最大公約數(shù)、互質(zhì)數(shù)、合數(shù)、質(zhì)數(shù)、質(zhì)因數(shù)、分解質(zhì)因數(shù)、奇數(shù)、偶數(shù)等。)
說得真好!這些知識之間是有密切聯(lián)系的。
對于今天整理出來的數(shù)的整除脈絡圖,大家有什么想法?
通過整理,可以使這部分知識更加條理化、系統(tǒng)化。
3、 自學課本,看一看還有什么不清楚的問題?
三、應用、解決問題
1、填空題
在1----20的自然數(shù)中,有( )個奇數(shù),有( )個偶數(shù),有( )個質(zhì)數(shù),有( )個合數(shù),奇數(shù)中的( )是合數(shù),偶數(shù)中的( )是質(zhì)數(shù),既不是質(zhì)數(shù)也不是合數(shù)的數(shù)是( )。
2、能同時被2、5、3整除的最小兩位數(shù)是( ),最大三位數(shù)是( )。
3、選擇題
(1)一個合數(shù)的約數(shù)有( )
A) 1個 B) 2個 C) 3個 D) 4個
。2)如果a 和 b 是互質(zhì)數(shù),那么它們的最小公倍數(shù)是( )
A) a B) b C) a b D) 1
4、判斷題
。1)整除一定是除盡,除盡不一定整除。 ( )
。2)相鄰的兩個自然數(shù)一定互質(zhì)。 ( )
。3)所有偶數(shù)都是合數(shù)。 ( )
(4)24分解質(zhì)因數(shù) 24 = 22231 。 ( )
。5)一個自然數(shù)的最大約數(shù)一定等于它的.最小公倍數(shù)。 ( )
5、把下面的數(shù)按照不同的標準分成兩類,你能想到幾種?
2 15 8 17 20
四、強化總結,拓展遷移
今天我們共同上了一節(jié)數(shù)的整除的整理與復習課,通過這節(jié)課的學習,我覺得大家特別聰明、好學,老師很高興與大家共同渡過了這美好的40分鐘,而且我們已經(jīng)是 多次合作,所以我想與大家做好朋友,你們愿意嗎?
老師想把自己的手機號碼告訴大家,大家以后有什么問題都可以和我聯(lián)系,好嗎?
老師的手機號碼是11位數(shù)字,每一位數(shù)字依次是:
1)是質(zhì)數(shù)也不是合數(shù);
2)最小奇數(shù)與最小質(zhì)數(shù)的和;
3)最小的自然數(shù);
4)質(zhì)數(shù)中最小的兩個數(shù)的和;
5)既是質(zhì)數(shù),又是偶數(shù);
6)最小質(zhì)數(shù)與最小合數(shù)的積;
7)有約數(shù)2 和3 的一位數(shù);
8)自然數(shù)中最小的奇數(shù);
9)最大約數(shù)與最小倍數(shù)都是 7 的數(shù);
10)所有自然數(shù)的約數(shù);
11)最大的一位數(shù) 。
同學們以后有事需要老師幫忙,隨時call我。
這節(jié)課上到這里可以嗎?
人教版六年級下冊數(shù)學教案 篇3
教學內(nèi)容:
抽取游戲
教學目標:
1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的問題。
2.體會數(shù)學與日常生活的聯(lián)系,了解數(shù)學的`價值,增強應用數(shù)學的意識。
教學重點:
抽取問題。
教學難點:
理解抽取問題的基本原理。
教學過程:
一、教學例
盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?
1.猜一猜。
讓學生想一想,猜一猜至少要摸出幾個球。
2.實驗活動。
。1) 一次摸出2個球,有幾種情況?
結果:有可能摸出2個同色的球。
。2) 一次摸3個球,有幾種情況?
結果:一定能摸出2個同色的球。
3.發(fā)現(xiàn)規(guī)律。
啟發(fā):摸出球的個數(shù)與顏色種數(shù)有什么關系?
學生不難發(fā)現(xiàn):只要摸出的球比它們的顏色種數(shù)多1,就能保證有兩個球同色。
二、做一做
第1題。
(1) 獨立思考,判斷正誤。
。2) 同學交流,說明理由。
第2題。
。1) 說一說至少取幾個,你怎么知道呢?
。2) 如果取4個,能保證取到兩個顏色相同的球嗎?為什么?
三、鞏固練習
完成課文練習十二第1、3題。
人教版六年級下冊數(shù)學教案 篇4
(1)兩個質(zhì)數(shù)的和是39,這兩個質(zhì)數(shù)的積是( )。
分析 本題考查的是質(zhì)數(shù)的意義及數(shù)的奇偶性等知識。
兩個數(shù)的和是39,說明這兩個數(shù)一個數(shù)是奇數(shù),一個數(shù)是偶數(shù),因為它們都是質(zhì)數(shù),所以其中的偶數(shù)只能是2,則奇數(shù)是39-2=37,37×2=74。
解答 74
(2)120的因數(shù)有( )個。
分析 求一個較小數(shù)的因數(shù)的個數(shù)一般用列舉法,但求較大數(shù)的因數(shù)的個數(shù)時,一般用分解質(zhì)因數(shù)法,即先把120分解質(zhì)因數(shù):120=2×2×2×3×5,然后借助每個因數(shù)的個數(shù)來計算。因數(shù)2的個數(shù)是3個,因數(shù)3的個數(shù)是1個,因數(shù)5的`個數(shù)也是1個,120的因數(shù)的個數(shù)為(3+1)×(1+1)×(1+1)=16(個)。
解答 16
⊙探究活動
1.課件出示題目。
(1)一個長方體木塊,長2.7 m,寬1.8 m,高1.5 m。要把它切成大小相等的正方體木塊,不許有剩余,正方體的棱長最大是多少分米?
(2)學校六年級有若干名同學排隊做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年級最少有多少人?
2.明確探究要求。(小組合作、思考、交流)
(1)這兩道題分別考查什么知識?
(2)怎樣解決這兩個問題?
(3)具體的解答過程是怎樣的?
3.匯報。
(1)先匯報前兩個問題。
預設
生1:第(1)題考查的是應用因數(shù)的知識解決問題的能力。
生2:第(2)題考查的是應用倍數(shù)的知識解決問題的能力。
生3:根據(jù)題意,正方體的最大棱長應該是長方體長、寬、高的最大公因數(shù),所以先把相關長度轉換單位,用整數(shù)表示,然后求長、寬、高的最大公因數(shù)。
生4:根據(jù)題意,六年級人數(shù)比3、7、11的最小公倍數(shù)多2,所以先求出3、7、11的最小公倍數(shù),再加2就可以了。
(2)嘗試解答。(關注學生求三個數(shù)的最大公因數(shù)或最小公倍數(shù)的情況,發(fā)現(xiàn)問題并及時點撥)
(3)匯報解答過程。(指名板演,集體訂正)
預設
生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因為27、18、15的最大公因數(shù)是3,所以正方體的棱長最大是3 dm。
生2:因為3、7、11的最小公倍數(shù)是3×7×11=231,231+2=233(人),所以六年級最少有233人。
4.小結。
解答此類問題,關鍵要弄清考查的是因數(shù)的知識還是倍數(shù)的知識,同時要會求兩個或三個數(shù)的最大公因數(shù)及最小公倍數(shù)。
⊙課堂總結
通過本節(jié)課的學習,掌握了因數(shù)與倍數(shù)的相關知識,我們學會應用這些知識解決實際問題,學以致用。
⊙布置作業(yè)
教材75頁5、9題。
板書設計
因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)
因數(shù)和倍數(shù)質(zhì)數(shù)——質(zhì)因數(shù)合數(shù)——分解質(zhì)因數(shù)1公因數(shù)互質(zhì)數(shù)最大公因數(shù)倍數(shù)——公倍數(shù)——最小公倍數(shù)能被2、5、3整除的數(shù)的特征。
人教版六年級下冊數(shù)學教案 篇5
教材分析
本節(jié)內(nèi)容是學生學習了長方體與正方體的表面積后,在充分理解了圓柱的認識的基礎上開展的.教材中選用了許多來自現(xiàn)實生活中的問題,通過學生想象和動手操作,使學生進一步理解圓柱的側面展開是一個長方形或一個正方形,底面是兩個圓的基礎上,掌握圓柱的表面積的求法,獲得求“圓柱體表面積”的算法。
學情分析
由于每個學生的.學習水平有差異,在學習中可能會出現(xiàn)部分學生不知道圓柱側面轉化成學過的平面圖形;或是有的同學已經(jīng)知道怎么求圓柱的側面積,但不能結合操作清晰地表述圓柱側面積計算方法的推導過程。教師可以引導學生在上節(jié)課的基礎上學習本節(jié)課,讓學生通過動手操作,小組討論得出圓柱的表面積的求法,及在生活中的應用。
教學目標
知識目標:理解圓柱體表面積的含義及求法。 能力目標:通過小組合作、獨立操作推導并掌握求圓柱的表面積的方法,并能解決實際問題。
情感目標:體驗成功的收獲,體會小組合作探索成功過程的喜悅。
教學重點和難點
重點:教師引導,動手操作得出求圓柱表面積的方法。
難點:計算方法在生活中的應用。
教學過程
一、復習導入:
1、圓柱由幾個面組成?上下兩個面是什么?側面展開是什么圖形?
2、圓面積怎樣求?
3、長方形的面積呢?
二、創(chuàng)設情境,引起興趣:
出示一頂廚師帽,讓學生觀察,做著一定帽需要多少布料?用我們以前學的知識能解決嗎?教師借機引出課題并板書課題《圓柱表面積的求法》
三、 自主探究,發(fā)現(xiàn)問題。
1、分組,討論:
(1)、動手將圓柱的側面沿著高剪開 。(你發(fā)現(xiàn)了什么?)
圓柱的側面剪開發(fā)現(xiàn)側面是一個長方形(正方形),
側面積=長方形的面積=長×寬=地面周長×高。
重點感受:圓柱體側面如果沿著高展開是一個長方形。(這里要強調(diào)沿著高剪)這個長方形與圓柱體的哪個面有什么關系?(長方形的長是圓柱體底面周長、長方形的寬是圓柱體的高)
。2)、復習引導:(用舊解新)
上下兩個圓的面積怎樣求?(如果已知底面半徑就能求出底面積)
。3)、小結:小組討論,將公式延伸。
圓柱表面積 = 圓柱的側面積+底面積×2
=Ch+2π r2
=πdh+2π r2
2、知識的運用:(回到情景創(chuàng)設)
。1)、出示例題:
例2:假如一頂廚師的帽子,高 28厘米,帽頂半徑10厘米,做一頂帽子至少需要多少面料?( 用進一法結果保留正是整十平方厘米)
。2)、獨立試做:
(3)、集體講評。
。4)、講解進一法。
3.鞏固練習:
四、課堂總結:
這一節(jié)課重點學習了圓柱表面積的計算方法及運用。
人教版六年級下冊數(shù)學教案 篇6
教學內(nèi)容:
九年義務教育六年制第十二冊第36~37頁例4、例5及做一做,練習八的第1、2題。
教學目標:
1、理解圓柱體體積公式的推導過程,并會正確地計算出圓柱的體積。
2、培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展空間觀念。
3、引導學生探索和解決問題,體驗轉化及極限的思想方法。
教學重點:圓柱體體積的計算.
教學難點:理解圓柱體體積公式的推導過程.
教具:多媒體課件、圓柱形容器、水、橡皮泥。
教學過程:
一、激凝導入
師: 大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習慣。可前兩天,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?
(2)生回答。
2、出示橡皮泥捏成的圓柱體。
那你有辦法求出這個圓柱體橡皮泥的體積嗎?
生(熱情的):老師將它捏成長方體或正方體就可以了!
3、創(chuàng)設問題情境。
師小結:這么說同學們都有辦法將一些圓柱形的物體轉化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學們想出來的辦法嗎?(不能)
那怎么辦?
學生試說出自己的辦法。
師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的`方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗、探究新知
1、推導圓柱的體積公式。
師:你們打算怎么去研究圓柱的體積?
小組同學討論研究的方法。
2、學生動手操作感知
(1)學生以小組為單位操作體驗。(操作學具,進行拼組)。
(2)學生小組匯報交流:
近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。
。3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)
3、教師課件演示圓柱轉化成長方體的過程。
4、師生共同推導出圓柱的體積公式:
長方體的體積=底面積高
圓柱的體積=底圓柱面積高
V = Sh
5、鞏固公式
、賄、S、h各表示什么?
、谥滥男l件就可以求圓柱的體積?
а、知道底面積和高可以直接用公式計算圓柱的體積;
b、知道底面半徑和高,可以先計算出底面積,再計算體積;
c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。
學生回答后師板書。
6、教學例4、例5。
課件分別出示例4、例5,讓學生找出題中的條件和問題,然后獨立完成,集體訂正。
三、實踐練習
1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關數(shù)據(jù)求出它的體積。
2、拓展延伸:同學們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應是多少?小林想了想說:我知道了。
同學們,你們知道小林是怎樣想的嗎?
四、課堂總結;
通過本節(jié)課的學習,你有什么收獲?
人教版六年級下冊數(shù)學教案 篇7
課前準備
教師準備 PPT課件
教學過程
⊙談話揭題
上節(jié)課,我們從意義、讀法、寫法、大小比較、改寫以及省略尾數(shù)保留近似數(shù)等幾個方面復習了整數(shù)的相關知識,這節(jié)課我們按類似的思路來復習小數(shù)的相關知識。(板書課題:小數(shù)的認識)
⊙回顧與整理
1.小數(shù)的意義。
過渡:同學們,在生活中我們常常遇到不能用整數(shù)表示物體個數(shù)的時候,例如:我吃了半個蘋果,做一件上衣要用一米半的布料……提問:半個、一米半怎樣來表示呢?誰來說說小數(shù)的意義?
預設
生1:半個可以用0.5來表示,一米半可以用1.5來表示。
生2:把整數(shù)“1”平均分成10份、100份、1000份……這樣的幾份是十分之幾、百分之幾、千分之幾……可以用小數(shù)來表示。
2.小數(shù)的數(shù)位順序表。
師:小數(shù)的數(shù)位順序表是怎樣的?誰能把整數(shù)、小數(shù)的'數(shù)位順序表補充完整?
(課件出示數(shù)位順序表,小數(shù)部分留白。指名回答,師填充)
3.小數(shù)的讀法和寫法。
(1)師:怎樣讀小數(shù)?怎樣寫小數(shù)?
預設
生1:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分按從左到右的順序順次讀出每一個數(shù)位上的數(shù)字。
生2:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法寫,小數(shù)點寫在個位的右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。
(2)寫小數(shù)時需要注意什么?
(空位用“0”補足)
4.小數(shù)的分類。
(1)誰知道根據(jù)小數(shù)部分的位數(shù)是否有限,小數(shù)可以分成哪幾類?
預設
生:根據(jù)小數(shù)部分的位數(shù)是否有限,小數(shù)可以分成“有限小數(shù)”和“無限小數(shù)”兩類。
(2)誰能舉例說明什么是有限小數(shù)?什么是無限小數(shù)?
預設
生1:小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。例如:21.7,35.3,0.13都是有限小數(shù)。
生2:小數(shù)部分的位數(shù)是無限的小數(shù),叫做無限小數(shù)。例如:8.33…,3.1415926…都是無限小數(shù)。
(3)無限小數(shù)還可以再細分嗎?如果細分,那么可以分成哪幾類?
預設
生:無限小數(shù)可以分為無限不循環(huán)小數(shù)和循環(huán)小數(shù)。
(4)關于無限不循環(huán)小數(shù)和循環(huán)小數(shù),你都了解哪些知識?
預設
生1:一個數(shù)的小數(shù)部分,數(shù)字排列沒有規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例如:π
生2:一個數(shù)的小數(shù)部分從某一位起,一個數(shù)字或者幾個數(shù)字依次不斷地重復出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:2.555… 0.0333… 17.109109…
生3:一個循環(huán)小數(shù)的小數(shù)部分依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。
例如:3.99…的循環(huán)節(jié)是“9”,0.5454…的循環(huán)節(jié)是“54”。
5.小數(shù)的性質(zhì)。
(1)師:誰能說說小數(shù)有怎樣的性質(zhì)?
預設
生:在小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。
(2)理解小數(shù)的性質(zhì)時,應該注意什么?
(提示:要注意是“小數(shù)的末尾”,而不是“小數(shù)點的后面”)
6.小數(shù)點位置的變化。
人教版六年級下冊數(shù)學教案 篇8
一、學習目標
。ㄒ唬⿲W習內(nèi)容
《義務教育教科書數(shù)學》(人教版)六年級下冊第五單元第68~69頁的例1、2!俺閷显怼笔且活愝^為抽象和艱澀的數(shù)學問題,對全體學生而言具有一定的挑戰(zhàn)性。為此,教材選擇了一些常見的、熟悉的事物作為學習內(nèi)容,經(jīng)歷將具體問題“數(shù)學化”的過程。
。ǘ┖诵哪芰
經(jīng)歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。
。ㄈ⿲W習目標
1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。
2.通過操作、觀察、比較、說理等數(shù)學活動,經(jīng)歷鴿巢原理的形成活動,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。
。ㄋ模⿲W習重點
了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
。ㄎ澹⿲W習難點
運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。
。┡涮踪Y源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.談話導入
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。
師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節(jié)課以后大家就知道了。
2.問題探究
(1)呈現(xiàn)問題,引出探究
出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。
師:“總有”是什么意思?“至少”有2支是什么意思?
學生自由發(fā)言。
預設:一定有
不少于兩只,可能是2支,也可能是多于2支。
就是不能少于2支。
。2)體驗探究,建立模型
師:好的,看來大家已經(jīng)理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發(fā)現(xiàn)?
小組活動:學生思考,擺放。
、倜杜e法
師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。
預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。
師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?
。ú灰欢,也可能放在其它筆筒里。)
師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?
預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。
師:這種放法可以記作(3,1,0)
師:這3支鉛筆一定要放在第一個筆筒里嗎?
。ú灰欢ǎ
師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。
預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。
師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?
預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。
預設4:還可以(2,1,1)
或者(1,1,2)、(1,2,1)
師:還有其它的放法嗎?
(沒有了)
師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)
師:這幾種放法如果用一句話概括可以怎樣說?
。ㄑb得最多的筆筒里至少裝2支。)
師:裝得最多的那個筆筒一定是第一個筆筒嗎?
(不一定,哪個筆筒都有可能。)
【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數(shù)的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話!
②假設法
師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?
預設:先把鉛筆平均放,然后剩下的'再放進其中一個筆筒里。
師:“平均放”是什么意思?
預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。
師:為什么要先平均分?
學生自由發(fā)言。
引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。
師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現(xiàn)總有一個筆筒里至少有2支鉛筆。
師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。
【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經(jīng)驗上升為理論水平,進一步強化方法、理清思路。】
。3)提升思維,建立模型
、偌由罡形
師:如果把5支筆放進4個筆筒里呢?大家討論討論。
預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:把7支筆放進6個筆筒里呢?還用擺嗎?
學生自由發(fā)言。
師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?
師:你發(fā)現(xiàn)了什么?
預設:我發(fā)現(xiàn)鉛筆的支數(shù)比筆筒數(shù)多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?
學生自由發(fā)言。
師:你們太了不起了!
師:難道這個規(guī)律只有在鉛筆的支數(shù)比筆筒數(shù)多1的情況下才成立嗎?你認為還有什么情況?
練一練:
師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”
師:說說你的想法。
師:由此看來,只要分的物體比抽屜的數(shù)量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理!景鍟n題】
介紹狄利克雷:
師:鴿巢原理最先是由19世紀的德國數(shù)學家狄利克雷提出來應用于解決問題的,后來人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。
、诮⒛P
出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?
學生獨立思考、討論后匯報:
師:怎樣用算式表示我們的想法呢?生答,板書如下。
7÷3=2本……1本(2+1=3)
師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。
出示:
把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
10÷3=3本……1本(3+1=4)
師:觀察板書你有什么發(fā)現(xiàn)?
預設:我發(fā)現(xiàn)“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。
師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。
學生討論,匯報:
8÷3=2……22+1=3
8÷3=2……22+2=4
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。
師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?
預設:我認為根“商”有關,只要用“商+1”就可以得到。
師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)。」皇侵灰谩吧蹋1”就可以了。
引導總結:我們把要分的物體數(shù)量看做a,抽屜的個數(shù)看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。
鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。
【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數(shù)的除法”的形式?梢允箤W生更好地理解“抽屜原理”的一般思路,經(jīng)歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力?疾槟繕1、2】
3.鞏固練習
(1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現(xiàn)在能解釋一下嗎?(出示課件)學生思考,討論。
。2)第69頁的做一做第1、2題。
4.全課總結
師:通過這節(jié)的學習,你有什么收獲?
小結:今天這節(jié)課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們?nèi)ブ圃斐閷稀?/p>
(三)課時作業(yè)
1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?
答案:2名。
解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】
2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。
答案:8名。
解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】
第二課時鴿巢原理
中原區(qū)汝河新區(qū)小學師芳
一、學習目標
。ㄒ唬⿲W習內(nèi)容
《義務教育教科書數(shù)學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。
。ǘ┖诵哪芰
在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。
。ㄈ⿲W習目標
1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。
2.經(jīng)歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。
(四)學習重點
引導學生把具體問題轉化為“抽屜原理”。
。ㄎ澹⿲W習難點
找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。
。┡涮踪Y源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
。ㄒ唬┱n堂設計
1.情境導入
師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們?nèi)我馓舫?張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。
師:神奇吧!你們想不想表演一個呢?
師:現(xiàn)在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數(shù)相同呢?
在學生抽的基礎上揭示課題。教師:這節(jié)課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)
2.探究新知
。1)學習例3
、俨孪
出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?
預設:2個、3個、5個…
、隍炞C
師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。
可以用表格進行整理,課件出示空白表格:
學生獨立思考填表,小組交流。
全班匯報。
匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規(guī)律可循。
課件匯總,思考:從這里你能發(fā)現(xiàn)什么?
教師:通過驗證,說說你們得出什么結論。
小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。
③小結
師:為什么球的個數(shù)一定要比抽屜數(shù)多?而且是多1呢?
預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數(shù)多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數(shù)必須“至少”,所以摸3個球就夠了。
師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色”。這一結論是正確的。
板書:只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色;蛘哒f只要物體數(shù)比抽屜數(shù)至少多1,就能保證有一個抽屜至少放2個物體。
。2)引導學生把具體問題轉化成“抽屜原理”。
師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯(lián)系起來思考呢?
思考:①摸球問題與“抽屜原理”有怎樣的聯(lián)系?
、趹摪咽裁纯闯伞俺閷稀保坑袔讉“抽屜”?要分別放的東西是什么?
學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。
從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。
結論:要保證摸出的球有兩個同色,摸出的球數(shù)至少要比抽屜數(shù)多1。
3.鞏固練習
。1)完成教材第70頁“做一做”第1題。
(2)完成教材第70頁“做一做”第2題。
4.課堂總結
師:這節(jié)課你學到了什么知識?談談你的收獲和體驗。
(三)課時作業(yè)
1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?
答案:5只。
解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數(shù)比抽屜多1!究疾槟繕1、2】
2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?
答案:16條。
解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數(shù)是:5×3+1=16!究疾槟繕1、2】
【人教版六年級下冊數(shù)學教案】相關文章:
人教版六年級下冊數(shù)學教案03-14
人教版六年級下冊數(shù)學教案06-17
人教版六年級下冊數(shù)學教案06-30
人教版六年級下冊數(shù)學教案6篇11-18
人教版六年級下冊數(shù)學教案5篇01-11
人教版六年級下冊數(shù)學教案7篇11-19
人教版六年級下冊數(shù)學教案8篇01-13