八年級(jí)數(shù)學(xué)教案九篇
作為一位杰出的老師,總歸要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。快來參考教案是怎么寫的吧!下面是小編整理的八年級(jí)數(shù)學(xué)教案9篇,僅供參考,大家一起來看看吧。
八年級(jí)數(shù)學(xué)教案 篇1
11.1 與三角形有關(guān)的線段
11.1.1 三角形的邊
1.理解三角形的概念,認(rèn)識(shí)三角形的頂點(diǎn)、邊、角,會(huì)數(shù)三角形的個(gè)數(shù).(重點(diǎn))
2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))
3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))
一、情境導(dǎo)入
出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會(huì)生活中處處有數(shù)學(xué).
教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.
問:你能不能給三角形下一個(gè)完整的定義?
二、合作探究
探究點(diǎn)一:三角形的概念
圖中的銳角三角形有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.
方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.
探究點(diǎn)二:三角形的三邊關(guān)系
【類型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.
方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長(zhǎng)度之和大于第三條線段的長(zhǎng)度即可.
【類型二】 判斷三角形邊的取值范圍
一個(gè)三角形的三邊長(zhǎng)分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長(zhǎng)分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識(shí)進(jìn)行解決.
【類型三】 等腰三角形的三邊關(guān)系
已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為4和9,求這個(gè)三角形的周長(zhǎng).
解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長(zhǎng)的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長(zhǎng)是4+9+9=22.
方法總結(jié):在求三角形的邊長(zhǎng)時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長(zhǎng)能否組成三角形.
【類型四】 三角形三邊關(guān)系與絕對(duì)值的綜合
若a,b,c是△ABC的三邊長(zhǎng),化簡(jiǎn)|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對(duì)值里的式子的正負(fù),然后去絕對(duì)值符號(hào)進(jìn)行計(jì)算即可.
解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的`式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).
三、板書設(shè)計(jì)
三角形的邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關(guān)系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力.
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)目標(biāo):
1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
難點(diǎn):
會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
情感態(tài)度與價(jià)值觀:
通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類比性解決問題.
教學(xué)過程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2.回憶0指數(shù)冪的'規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.
八年級(jí)數(shù)學(xué)教案 篇3
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識(shí)與技能
1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。
情感態(tài)度與價(jià)值觀
通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的`位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對(duì)的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級(jí)數(shù)學(xué)教案 篇4
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問題;通過具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級(jí),還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的`同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
八年級(jí)數(shù)學(xué)教案 篇5
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.
問題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?
二、探究歸納
問題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說說隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說.
(2)波長(zhǎng)l越大,頻率f就 越小 .
問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的'面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)教案 篇6
一、教學(xué)目的
1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.
難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問題.
三、教學(xué)過程
復(fù)習(xí)提問
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?
3.說出下列各點(diǎn)所在象限或坐標(biāo)軸:
新課
1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的`對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來.
(2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖.
練習(xí)
、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習(xí)題.
四、教學(xué)注意問題
1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性.
3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.
八年級(jí)數(shù)學(xué)教案 篇7
教學(xué)目標(biāo):
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
教學(xué)重點(diǎn):
算術(shù)平方根的概念。
教學(xué)難點(diǎn):
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過程
一、情境導(dǎo)入
請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長(zhǎng)應(yīng)取多少 ?如果這塊畫布的面積是 ?這個(gè)問題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
二、導(dǎo)入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的`算術(shù)平方根是0.
也就是,在等式 =a (x0)中,規(guī)定x = .
2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如 表示25的算術(shù)平方根。
4、例1 求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習(xí)
P69練習(xí) 1、2
四、探究:(課本第69頁)
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習(xí)題13.1活動(dòng)第1、2、3題
八年級(jí)數(shù)學(xué)教案 篇8
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.
二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.
數(shù)學(xué)思考
在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.
解決問題
一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.
二、會(huì)解決與分式的加減有關(guān)的簡(jiǎn)單實(shí)際問題.
三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.
情感態(tài)度
通過師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).
重點(diǎn)
分式的加減法.
難點(diǎn)
異分母分式的加減法及簡(jiǎn)單的分式混合運(yùn)算.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的
活動(dòng)1:?jiǎn)栴}引入
活動(dòng)2:學(xué)習(xí)同分母分式的加減
活動(dòng)3:探究異分母分式的加減
活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則
活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)
向?qū)W生提出兩個(gè)實(shí)際問題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.
類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡(jiǎn)單運(yùn)算.
回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.
通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過分式在物理學(xué)的應(yīng)用及簡(jiǎn)單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.
通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
教學(xué)過程設(shè)計(jì)
問題與情境
師生行為
設(shè)計(jì)意圖
。刍顒(dòng)1]
1.問題一:比較電腦與手抄的錄入時(shí)間.
2.問題二;幫幫小明算算時(shí)間
所需時(shí)間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過課件展示問題.學(xué)生積極動(dòng)腦解決問題,提出困惑:
分式如何進(jìn)行加減?
通過實(shí)際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.
[活動(dòng)2]
1.提出小學(xué)數(shù)學(xué)中一道簡(jiǎn)單的分?jǐn)?shù)加法題目.
2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過課件出兩個(gè)小練習(xí).
教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.
學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.
通過例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).
由兩個(gè)學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).
運(yùn)用類比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).
師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會(huì)新知識(shí),提高自信心.
讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.
。刍顒(dòng)3]
1.教師以練習(xí)的形式通過“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.
教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.
由學(xué)生主動(dòng)提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的'興趣.
通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會(huì)學(xué)習(xí)的樂趣.
。刍顒(dòng)4]
1.在語言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過課件出4個(gè)小練習(xí).
4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
5.教師使用課件展示[例4]
教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.
通過例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過程.
教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡(jiǎn)公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.
教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.
分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).
由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語言的精練.
讓學(xué)生體會(huì)運(yùn)用的公式解決問題的過程.
鍛煉學(xué)生運(yùn)用法則解決問題的能力,既準(zhǔn)確又有速度.
提高學(xué)生的計(jì)算能力.
通過分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.
提高學(xué)生綜合應(yīng)用知識(shí)的能力.
。刍顒(dòng)5]
1.教師通過課件出2個(gè)分式混合運(yùn)算的小練習(xí).
2.總結(jié):
a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說一說嗎?
b)⑴方法思路;
c)⑵計(jì)算中的主意事項(xiàng);
d)⑶結(jié)果要化簡(jiǎn).
3.作業(yè):
a)教科書習(xí)題16.2第4、5、6題.
學(xué)生練習(xí)、鞏固.
教師巡視指導(dǎo).
學(xué)生完成、交流.,師生評(píng)價(jià).
教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.
教師布置作業(yè).
鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.
提高學(xué)生歸納總結(jié)的能力.
八年級(jí)數(shù)學(xué)教案 篇9
知識(shí)技能
1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。
2.探究線段垂直平分線的性質(zhì)。
過程方法
1.經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。
2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。
情感態(tài)度價(jià)值觀通過對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的`過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問題的能力。
教學(xué)重點(diǎn)
1.軸對(duì)稱的性質(zhì)。
2.線段垂直平分線的性質(zhì)。
教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。
教學(xué)方法和手段多媒體教學(xué)
過程教學(xué)內(nèi)容
引入中垂線概念
引出圖形對(duì)稱的性質(zhì)第一張幻燈片
上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對(duì)稱的性質(zhì)。
幻燈片二
1、圖中的對(duì)稱點(diǎn)有哪些?
2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?
理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。
我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
【熱門】八年級(jí)數(shù)學(xué)教案11-29