天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

八年級數學教案

時間:2022-08-21 16:27:36 八年級數學教案 我要投稿

【實用】八年級數學教案四篇

  作為一名教職工,常常需要準備教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。如何把教案做到重點突出呢?下面是小編整理的八年級數學教案4篇,歡迎大家借鑒與參考,希望對大家有所幫助。

【實用】八年級數學教案四篇

八年級數學教案 篇1

  知識技能

  1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

  2.探究線段垂直平分線的性質。

  過程方法

  1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發(fā)展空間觀察。

  2.探索線段垂直平分線的性質,培養(yǎng)學生認真探究、積極思考的能力。

  情感態(tài)度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發(fā)學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

  教學重點

  1.軸對稱的性質。

  2.線段垂直平分線的性質。

  教學難點體驗軸對稱的特征。

  教學方法和手段多媒體教學

  過程教學內容

  引入中垂線概念

  引出圖形對稱的性質第一張幻燈片

  上節(jié)課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對稱的'性質。

  幻燈片二

  1、圖中的對稱點有哪些?

  2、點A和A的連線與直線MN有什么樣的關系?

  理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

  我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

  定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

八年級數學教案 篇2

  知識要點

  1、函數的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

  相應地就確定了一個y值,那么稱y是x的函數,其中x是自變量,y是因變量。

  2、一次函數的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k0,b為常數)的形式,則稱y是x的一次函數, x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數。正比例函數是一次函數的特殊形式,因此正比例函數都是一次函數,而 一次函 數不一定都是正比例函數.

  3、正比例函數y=kx的性質

  (1)、正比例函數y=kx的圖象都經過

  原點(0,0),(1,k)兩點的一條直線;

  (2)、當k0時,圖象都經過一、三象限;

  當k0時,圖象都經過二、四象限

  (3)、當k0時,y隨x的增大而增大;

  當k0時,y隨x的增大而減小。

  4、一次函數y=kx+b的性質

  (1)、經過特殊點:與x軸的交點坐標是 ,

  與y軸的交點坐標是 .

  (2)、當k0時,y隨x的增大而增大

  當k0時,y隨x的增大而減小

  (3)、k值相同,圖象是互相平行

  (4)、b值相同,圖象相交于同一點(0,b)

  (5)、影響圖象的兩個因素是k和b

  ①k的正負決定直線的方向

  ②b的正負決定y軸交點在原點上方或下方

  5.五種類型一次函數解析式的確定

  確定一次函數的解析式,是一次函數學習的重要內容。

  (1)、根據直線的解析式和圖像上一個點的坐標,確定函數的解析式

  例1、若函數y=3x+b經過點(2,-6),求函數的解析式。

  解:把點(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函數的解析式為:y=3x-12

  (2)、根據直線經過兩個點的坐標,確定函數的解析式

  例2、直線y=kx+b的圖像經過A(3,4)和點B(2,7),

  求函數的表達式。

  解:把點A(3,4)、點B(2,7)代入y=kx+b,得

  ,解得:

  函數的解析式為:y=-3x+13

  (3)、根據函數的圖像,確定函數的解析式

  例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

  (小時)之間的關系.求油箱里所剩油y(升)與行駛時間x

  (小時)之間的函數關系式,并且確定自變量x的取值范圍。

  (4)、根據平移規(guī)律,確定函數的解析式

  例4、如圖2,將直線 向上平移1個單位,得到一個一次

  函數的圖像,那么這個一次函數的解析式是 .

  解:直線 經過點(0,0)、點(2,4),直線 向上平移1個單位

  后,這兩點變?yōu)?0,1)、(2,5),設這個一次函數的解析式為 y=kx+b,

  得 ,解得: ,函數的解析式為:y=2x+1

  (5)、根據直線的對稱性,確定函數的解析式

  例5、已知直線y=kx+b與直線y=-3x+6關于y軸對稱,求k、b的值。

  例6、已知直線y=kx+b與直線y=-3x+6關于x軸對稱,求k、b的值。

  例7、已知直線y=kx+b與直線y=-3x+6關于原點對稱,求k、b的值。

  經典訓練:

  訓練1:

  1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

  (1)梯形的面積y與上底的長x之間的關系是否是函數關系?為什么?

  (2)若y是x的函數,試寫出y與x之間的函數關系式 。

  訓練2:

  1.函數:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函數有___ __;正比例函數有____________(填序號).

  2.函數y=(k2-1)x+3是一次函數,則k的取值范圍是( )

  A.k1 B.k-1 C.k1 D.k為任意實數.

  3.若一次函數y=(1+2k)x+2k-1是正比 例函數,則k=_______.

  訓練3:

  1 . 正比例函數y=k x,若y隨x的增大而減 小,則k______.

  2. 一次函數y=mx+n的圖象如圖,則下面正確的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函數y=-2x+ 4的圖象經過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

  4.已知一次函 數y =(k-2)x+(k+2),若它的圖象經過原點,則k=_____;

  若y隨x的增大而增大,則k__________.

  5.若一次函數y=kx-b滿足kb0,且函數值隨x的減小而增大,則它的大致圖象是圖中的( )

  訓練4:

  1、 正比例函數的圖象經過點A(-3,5),寫出這正比例函數的解析式.

  2、已知一次函數的圖象經過點(2,1)和(-1,-3).求此一次函數的解析式 .

  3、一次函數y=kx+b的圖象如上圖所示,求此一次函數的解析式。

  4、已知一次函數y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數的解析式。

  5、已知y-1與x成正比例,且 x=-2時,y=-4.

  (1)求出y與x之間的函數關系式;

  (2)當x=3時,求y的值.

  一、填空題(每題2分,共26分)

  1、已知 是整數,且一次函數 的.圖象不過第二象限,則 為 .

  2、若直線 和直線 的交點坐標為 ,則 .

  3、一次函數 和 的圖象與 軸分別相交于 點和 點, 、 關于 軸對稱,則 .

  4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

  5、函數 ,如果 ,那么 的取值范圍是 .

  6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設長增加 ,寬增加 ,則 與 的函數關系是 .自變量的取值范圍是 .且 是 的 函數.

  7、如圖 是函數 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內, 隨 的增大而 .

  8、已知一次函數 和 的圖象交點的橫坐標為 ,則 ,一次函數 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .

  9、已知一次函數 的圖象經過點 ,且它與 軸的交點和直線 與 軸的交點關于 軸對稱,那么這個一次函數的解析式為 .

  10、一次函數 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

  11、一次函數 的圖象如圖 ,則 與 的大小關系是 ,當 時, 是正比例函數.

  12、 為 時,直線 與直線 的交點在 軸上.

  13、已知直線 與直線 的交點在第三象限內,則 的取值范圍是 .

  二、選擇題(每題3分,共36分)

  14、圖3中,表示一次函數 與正比例函數 、 是常數,且 的圖象的是( )

  15、若直線 與 的交點在 軸上,那么 等于( )

  A.4 B.-4 C. D.

  16、直線 經過一、二、四象限,則直線 的圖象只能是圖4中的( )

  17、直線 如圖5,則下列條件正確的是( )

  18、直線 經過點 , ,則必有( )

  A.

  19、如果 , ,則直線 不通過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知關于 的一次函數 在 上的函數值總是正數,則 的取值范圍是

  A. B. C. D.都不對

  21、如圖6,兩直線 和 在同一坐標系內圖象的位置可能是( )

  圖6

  22、已知一次函數 與 的圖像都經過 ,且與 軸分別交于點B, ,則 的面積為( )

  A.4 B.5 C.6 D.7

  23、已知直線 與 軸的交點在 軸的正半軸,下列結論:① ;② ;③ ;④ ,其中正確的個數是( )

  A.1個 B.2個 C.3個 D.4個

  24、已知 ,那么 的圖象一定不經過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關系可用圖象表示為( )

  三、解答題(1~6題每題8分,7題10分,共58分)

  26、如圖8,在直角坐標系內,一次函數 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數解析式.

  27、一次函數 ,當 時,函數圖象有何特征?請通過不同的取值得出結論?

  28、某油庫有一大型儲油罐,在開始的8分鐘內,只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內的油從24噸增至40噸,隨后又關閉進油管,只開出油管,直到將油罐內的油放完,假設在單位時間內進油管與出油管的流量分別保持不變.

  (1)試分別寫出這一段時間內油的儲油量Q(噸)與進出油的時間t(分)的函數關系式.

  (2)在同一坐標系中,畫出這三個函數的圖象.

  29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

  (1)設用電 度時,應交電費 元,當 100和 100時,分別寫出 關于 的函數關系式.

  (2)小王家第一季度交納電費情況如下:

  月份 一月份 二月份 三月份 合計

  交費金額 76元 63元 45元6角 184元6角

  問小王家第一季度共用電多少度?

  30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

  (1)求 與 之間的函數關系式;

  (2)若每度電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

  31、汽車從A站經B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關系;(2)如果汽車再行駛30分,離A站多少千米?

  32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調出100噸水泥,乙?guī)炜烧{出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

  路程/千米 運費(元/噸、千米)

  甲庫 乙?guī)?甲庫 乙?guī)?/p>

  A地 20 15 12 12

  B地 25 20 10 8

  (1)設甲庫運往A地水泥 噸,求總運費 (元)關于 (噸)的函數關系式,畫出它的圖象(草圖).

  (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

八年級數學教案 篇3

  教學任務分析

  教學目標

  知識技能

  探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.

  數學思考

  能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

  情感態(tài)度

  在應用等腰梯形的性質的過程養(yǎng)成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.

  重點

  等腰梯形的性質及其應用.

  難點

  解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

  教學流程安排

  活動流程圖

  活動的內容和目的

  活動1想一想

  活動2說一說

  活動3畫一畫

  活動4做—做

  活動5練一練

  活動6理一理

  觀察梯形圖片,引入本節(jié)課的學習內容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動,初步發(fā)現梯形與三角形的轉化關系.

  探究得到等腰梯形的性質.

  通過解決具體問題,尋找解決梯形問題的`方法.

  通過整理回顧,鞏固知識、提高能力、滲透思想.

  教學過程設計

  問題與情景

  師生行為

  設計意圖

  [活動1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

  演示圖片,學生欣賞.

  結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

  由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.

  [活動2]

  梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

  學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學生歸納、總結的能力.

  問題與情景

  師生行為

  設計意圖

  一些基本概念

 。1)(如圖):底、腰、高.

 。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

 。3)直角梯形:有一個角是直角的梯形叫做直角梯形.

  學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調:①梯形與四邊形的關系;

 、谏、下底的概念是由底的長短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質做準備.

  [活動3]

  畫一畫

  在下列所給圖中的每個三角形中畫一條線段,

 。1)怎樣畫才能得到一個梯形?

 。2)在哪些三角形中,能夠得到一個等腰梯形?

  在學生獨立探究的基礎上,學生分組交流.

  教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

  本次活動教師應重點關注:

 。1)學生在活動過程中能否發(fā)現梯形與三角形之間的聯(lián)系,他們之間的轉化方法.

  (2)學生能否將等腰三角形轉化為等腰梯形.

 。3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.

  等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.

  問題與情景

  師生行為

  設計意圖

  [活動4]

  做—做

  探索等腰梯形的性質(引入用軸對稱解決問題的思想).

  在一張方格紙上作一個等腰梯形,連接兩條對角線.

 。1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

 。2)這個等腰梯形的兩條對角線的長度有什么關系?

  學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

  針對不同認識水平的學生,教師指導學生活動.

  師生共同歸納:

 、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.

 、诘妊菪蝺裳嗟龋

 、鄣妊菪瓮坏咨系膬蓚角相等.

  ④等腰梯形的兩條對角線相等.

  教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.

  [活動5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長.

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

  分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

  其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.

  問題與情景

  師生行為

  設計意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

  [活動6]

  1.小結

  2.布置作業(yè)

 。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

 。2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

  (3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

  師生歸納總結:

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

 。2)“作高”:使兩腰在兩個直角三角形中(圖2);

 。3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

  (4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

 。5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

  盡量多地讓學生參與發(fā)言是一個交流的過程.

  梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

  學生通過獨立思考,完成課后作業(yè),便于發(fā)現問題,及時查漏補缺.

八年級數學教案 篇4

  教學指導思想與理論依據

  《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現教學內容的呈現方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具! 教師運用現代多媒體信息技術對教學活動進行創(chuàng)造性設計,發(fā)揮計算機輔助教學的特有功能,把信息技術和數學教學的學科特點結合起來,可以使教學的表現形式更加形象化、多樣化、視覺化,有利于充分揭示數學概念的形成與發(fā)展,數學思維的過程和實質,展示數學思維的形成過程,使數學課堂教學收到事半功倍的效果。

  教學內容分析:

  本節(jié)課內容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結構上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質。運用多媒體教學體現出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數據和宏觀指導作用,使學生學習本章具體內容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內容是四邊形這章的理論基礎,在該章占有非常重要的地位。

  學生情況分析:

  本班經歷了一年多課改實踐,學生對運用現代多媒體信息技術的教學方式有濃厚的`興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現、歸納、經歷數學知識于實踐的過程。

  教學方式與教學手段說明:

  本節(jié)課充分利用現有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經驗出發(fā),讓學生親身經歷數學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數據,并總結其性質,通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。

  知識與技能:

  1、初步理解特殊四邊形性質;

  2、培養(yǎng)學生自主收集、描述和分析數據的能力;

  過程與方法:

  1、了解特殊四邊形性質的形成過程;

  2、初步了解探究新知識的一些方法;

  情感與價值觀:

  1、了解特殊四邊形在日常生活中的應用;

  2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;

  3、初步具有感性認識上升到理性認識的辯證唯物主義思想。

  教學環(huán)境:

  多媒體計算機網絡教室

  教學課型:

  試驗探究式

  教學重點:

  特殊四邊形性質

  教學難點:

  特殊四邊形性質的發(fā)現

  一、設置情景,提出問題

  提出問題:

  知識已生活,又服務于生活。我們經過校門時,是否注意到電動門的機械工作原理(教師用幾何畫板演示)?

  1、電動門的網格和結點能組成哪些四邊形?

  2、在開(關)門過程中這些四邊形是如何變化的?

  3、你還發(fā)現了什么?

  解決問題:

  學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

  當我們學習完本節(jié)知識后,其他問題就容易解決了。

 。ㄒ鈭D:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)

  二、整體了解,形成系統(tǒng)

  本節(jié)課從整體角度研究特殊四邊形性質,為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。

  提出問題:

  1、本章主要研究哪些特殊四邊形?

  2、從哪幾方面研究這些特殊四邊形?

  3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設有是什么圖形呢?如果沒有,為什么?

  解決問題:

  學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。

  1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

  2、從邊、角、對角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對角線三方面考慮;

  3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。

 。ㄒ鈭D: 學生自主觀察、分組討論了解本章知識結構,從而形成系統(tǒng);通過假設、猜想、推理、論證、否定假設獲得新知識)

  三、個體研究、總結性質

  1、平行四邊形性質

  提出問題:

  在平行四邊形的形狀、位置、大小變化過程中,請觀察數據并找出邊長、角度、對角線長度相對不變的性質。

  解決問題:

  教師引導學生拖動B點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數據的變化,從中找出相對不變的要素。

  在圖形變化過程中,

 。1)對邊相等;

 。2)對角相等;

  (3)通過AO=CO 、BO=DO,可得對角線互相平分;

 。4)通過鄰角互補,可得對邊平行;

  (5)內外角和都等于360度;

  (6)鄰角互補;

  ……

  指導學生填表:

  平行四邊形性質矩形性質正方形性質

  菱形性質

  梯形性質等腰梯形性質

  直角梯形性質

 。葘儆谄叫兴倪呅涡再|又屬于矩形性質可以畫箭頭)

  按照平行四邊形性質的探索思路,分別研究:

  2、矩形性質;

  3、菱形性質;

  4、正方形性質;

  5、梯形性質;

  6、等腰梯形性質;

  7、直角梯形的性質。

 。ㄒ鈭D: 學生運用電腦自主收集、描述、分析數據,把抽象的性質變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)

  教師總結:

 。ㄒ鈭D: 掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質,又有自己的特點。既清楚地表達,又節(jié)省時間。)

  四、聯(lián)系生活,解決問題

  解決問題:

  學生操作電腦,觀察圖形、分組討論,教師個別指導。

  學生在分別演示開(關)門過程中,觀察數據并總結:邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

  四邊形具有不穩(wěn)定性,而三角形沒有這個特點……

 。ㄒ鈭D:使學生體會到數學于生活、又服務于生活,更重要的是培養(yǎng)學生應用知識解決實際問題的能力,體會成功后的喜悅。)

  五、小結

  1.研究問題從整體到局部的方法;

  2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質。

  六、作業(yè)

  1.平行四邊形內角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

  2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。

  學習效果評價

  針對教學內容、學生特點及設計方案,預計下列學習效果:

  利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數據并總結其性質,培養(yǎng)學生收集、描述和分析數據的能力,并達到初步理解特殊四邊形性質的目標。

  在問題引入、了解整體、測量個體、總結性質的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。

  學生演示開(關)門過程中,了解特殊四邊形在日常生活中的應用,并用所學的知識解釋實際問題,使自身價值得以實現并體會成功后的喜悅;

  由于個體差異,針對教學目標難以達到的個別學生,根據教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現。

【八年級數學教案】相關文章:

八年級的數學教案12-14

八年級數學教案06-18

八年級上冊人教版數學教案02-27

八年級的數學教案15篇12-14

八年級下冊數學教案01-01

【薦】八年級數學教案12-03

【熱】八年級數學教案12-07

【精】八年級數學教案12-04

八年級數學教案【精】12-04

八年級數學教案【熱門】12-03