八年級數(shù)學(xué)教案集錦九篇
作為一位優(yōu)秀的人民教師,就不得不需要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。寫教案需要注意哪些格式呢?以下是小編為大家收集的八年級數(shù)學(xué)教案9篇,僅供參考,歡迎大家閱讀。
八年級數(shù)學(xué)教案 篇1
一、教學(xué)目標(biāo)
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
(二)平方根概念
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負(fù)數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運(yùn)算,叫做開平方的'運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運(yùn)算與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過平方運(yùn)算來求一個數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時(shí),通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號a”。
練習(xí):1.用正確的符號表示下列各數(shù)的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
、0。2的平方根是
、3的平方根是
⑤ 的平方根是
由學(xué)生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計(jì)
平方根
。ㄒ唬└拍 (四)表示方法 例1
(二)性質(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學(xué)教案 篇2
教材分析
因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的`能力。
學(xué)情分析
通過探究平方差公式和運(yùn)用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
教學(xué)目標(biāo)
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。
難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
八年級數(shù)學(xué)教案 篇3
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).
3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點(diǎn)在坐標(biāo)系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).
2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.
分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的`橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.
解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).
過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.
三、實(shí)踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.
解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
八年級數(shù)學(xué)教案 篇4
課題:一元二次方程實(shí)數(shù)根錯例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時(shí)少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實(shí)根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個實(shí)根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實(shí)數(shù)根x1、x2。
。1)求k的取值范圍;
。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時(shí),方程有兩個不相等的實(shí)數(shù)根。
。2)存在。
如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。
∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個不相等的實(shí)數(shù)根。
(2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?
解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=
。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。
又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。
3、條件多面時(shí)(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。
求證:關(guān)于x的.方程
。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實(shí)數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數(shù)學(xué)教案 篇5
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進(jìn)行分類;
3.通過對三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的`辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動式,談話法
教學(xué)過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認(rèn)知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因?yàn)檫@個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計(jì)了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1 觀察:三個內(nèi)角拼成了一個
什么角?問題2 此實(shí)驗(yàn)給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值
,那么對三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個銳角有何關(guān)系?
問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識的能力。
3、三角形三個內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程
八年級數(shù)學(xué)教案 篇6
教學(xué)內(nèi)容和地位:
眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢的兩個統(tǒng)計(jì)特征量,是幫助學(xué)生學(xué)會用數(shù)據(jù)說話的基本概念。本節(jié)課的教學(xué)內(nèi)容和現(xiàn)實(shí)生活密切相關(guān),是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識和創(chuàng)新能力的最好素材。
教學(xué)重點(diǎn)和難點(diǎn):
本節(jié)課的重點(diǎn)是眾數(shù)和中位數(shù)兩概念的形成過程及兩概念的運(yùn)用。本節(jié)課的難點(diǎn)是對統(tǒng)計(jì)數(shù)據(jù)從多角度進(jìn)行全面地分析。因?yàn)槔脭?shù)據(jù)進(jìn)行分析,對剛剛接觸統(tǒng)計(jì)的學(xué)生來說,他們原有的認(rèn)知結(jié)構(gòu)中缺乏這方面的知識經(jīng)驗(yàn),所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學(xué)生突破這一知識難點(diǎn)。
教學(xué)目標(biāo)分析:
認(rèn)知目標(biāo):
。1)使學(xué)生認(rèn)知眾數(shù)、中位數(shù)的意義;
。2)會求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。
能力目標(biāo):
(1)讓學(xué)生接觸并解決一些社會生活中的問題,為學(xué)生創(chuàng)新學(xué)數(shù)學(xué)、用數(shù)學(xué)的情境,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識。
。2)在問題解決的過程中,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力;
。3)在問題分析的過程中,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作精神。
情感目標(biāo):
(1)通過多媒體網(wǎng)絡(luò)課件,提供適當(dāng)?shù)?問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;
。2)在合作學(xué)習(xí)中,學(xué)會交流,相互評價(jià),提高學(xué)生的合作意識與能力。
教學(xué)輔助:網(wǎng)絡(luò)教室、多媒體輔助網(wǎng)絡(luò)教學(xué)課件、BBS電子公告欄、學(xué)習(xí)資源庫
教法與學(xué)法:
根據(jù)本節(jié)課的教學(xué)內(nèi)容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或?qū)W生)提出適當(dāng)?shù)膯栴},通過學(xué)生與學(xué)生(或教師)之間相互交流,相互學(xué)習(xí),相互討論,在問題解決的過程中發(fā)現(xiàn)概念的產(chǎn)生過程,體現(xiàn)“數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的過程的教學(xué)”。在教學(xué)活動中,通過學(xué)生的自主學(xué)習(xí)來體現(xiàn)他們的主體地位,而教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的主導(dǎo)作用。另外,在學(xué)生合作學(xué)習(xí)的同時(shí),始終堅(jiān)持對學(xué)生進(jìn)行“學(xué)疑結(jié)合”、“學(xué)思結(jié)合”、“學(xué)用結(jié)合”的學(xué)法指導(dǎo),這對學(xué)生的主體意識的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。
八年級數(shù)學(xué)教案 篇7
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進(jìn)行檢測。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
(1)請你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來探索這個問題。
探索活動
通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的`波動情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
。4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導(dǎo):以3個數(shù)為例
(二)標(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.
注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計(jì)量。
八年級數(shù)學(xué)教案 篇8
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過程:
(一)引入
(1)如何計(jì)算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計(jì)算:
(3)何計(jì)算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的.最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
八年級數(shù)學(xué)教案 篇9
分式方程
教學(xué)目標(biāo)
1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價(jià)值.
教學(xué)重點(diǎn):
將實(shí)際問題中的等量 關(guān)系用分式方程表示
教學(xué)難點(diǎn):
找實(shí)際問題中的等量關(guān)系
教學(xué)過程:
情境導(dǎo)入:
有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的'高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從 甲地到乙地所需的時(shí)間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_________h。
根據(jù)題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點(diǎn)?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習(xí)
(1)據(jù)聯(lián)合國《20xx年全球投資 報(bào)告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時(shí)間相同,水流速度為2. 5千米/小時(shí),求輪船的靜水速度
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
六、學(xué) 習(xí)小結(jié)
本節(jié)課你學(xué)到了哪些知識?有什么感想?
七.作業(yè)布置
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級下冊數(shù)學(xué)教案01-01
【薦】八年級數(shù)學(xué)教案12-03
【熱】八年級數(shù)學(xué)教案12-07
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04