有關(guān)八年級數(shù)學教案3篇
作為一名教職工,就有可能用到教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的八年級數(shù)學教案3篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學教案 篇1
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學習研究也是作用非凡。
通過近些年的中考數(shù)學試卷的分析可以得出:韋達定理及其應用是各地市中考數(shù)學命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的.將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達定理的教學,可以培養(yǎng)學生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學問題的能力,也為學生今后學習方程理論打下基礎(chǔ)。
(二)重點、難點
一元二次方程根與系數(shù)的關(guān)系是重點,讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
(三)教學目標
1、知識目標:要求學生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學教案 篇2
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的'圖形;
3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結(jié)合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設(shè)計:
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結(jié),老師給予適當?shù)闹笇,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補充。
課堂小結(jié):
在教師的引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。
八年級數(shù)學教案 篇3
教學目標:
1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學生的探究意識和合作交流的習慣;
2。索并掌握平行四邊形的性質(zhì),并能簡單應用;
3。在探索活動過程中發(fā)展學生的探究意識。
教學重點:平行四邊形性質(zhì)的探索。
教學難點:平行四邊形性質(zhì)的理解。
教學準備:多媒體課件
教學過程
第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)
1。小組活動一
內(nèi)容:
問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。
。1)你拼出了怎樣的.四邊形?與同桌交流一下;
。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。
2。小組活動二
內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?
第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)
小組活動3:
用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?
。1)讓學生動手操作、復制、旋轉(zhuǎn) 、觀察、分析;
。2)學生交流、議論;
(3)教師利用多媒體展示實踐的過程。
第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學本質(zhì)。)
實踐 探索內(nèi)容
。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。
。2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。
∵ 四邊形ABCD是平行四邊形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四環(huán)節(jié) 應用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應用,同時從不同角度平移、旋轉(zhuǎn)等再一次認識平行四邊形的本質(zhì)特征。)
1;顒觾(nèi)容:
。1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?
A(學生思考、議論)
B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。
由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。
(2)練一練(P99隨堂練習)
練1 如圖:四邊形ABCD是平行四邊形。
(1)求ADC、BCD度數(shù)
。2)邊AB、BC的度數(shù)、長度。
練2 四邊形ABCD是平行四邊形
。1)它的四條邊中哪些 線段可以通過平移相到得到?
(2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。
歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。
第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學生踴躍談感受和收獲)
活動內(nèi)容
師生相互交流、反思、總結(jié)。
(1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。
(2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?
。3)本節(jié)學習到了什么?(知識上、方法上)
考一考:
1。 ABCD中,B=60,則A= ,C= ,D= 。
2。 ABCD中,A比B大20,則C= 。
3。 ABCD中,AB=3,BC=5,則AD= CD= 。
4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。
布置作業(yè)
課本習題4。1
A組(學優(yōu)生)1 、2
B組(中等生)1、2
C組(后三分之一生)1、2
教學反思
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
八年級上冊人教版數(shù)學教案02-27
八年級的數(shù)學教案15篇12-14
八年級下冊數(shù)學教案01-01
【薦】八年級數(shù)學教案12-03
【熱】八年級數(shù)學教案12-07
【精】八年級數(shù)學教案12-04
八年級數(shù)學教案【精】12-04
八年級數(shù)學教案【熱門】12-03