- 相關(guān)推薦
高一年級(jí)數(shù)學(xué)教案:等比數(shù)列的前n項(xiàng)和
作為一名教學(xué)工作者,通常會(huì)被要求編寫(xiě)教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。寫(xiě)教案需要注意哪些格式呢?以下是小編為大家整理的高一年級(jí)數(shù)學(xué)教案:等比數(shù)列的前n項(xiàng)和,僅供參考,大家一起來(lái)看看吧。
高一年級(jí)數(shù)學(xué)教案:等比數(shù)列的前n項(xiàng)和1
教學(xué)目標(biāo)
1、掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題。
。1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;
。2)用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;
2、通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想。
3、通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度。
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。
。2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊(yùn)含了豐富的`數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況。
教學(xué)建議
。1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題。
。2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。
。3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。
。4)編擬例題時(shí)要全面,不要忽略的情況。
。5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大。
。6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題。
高一年級(jí)數(shù)學(xué)教案:等比數(shù)列的前n項(xiàng)和2
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
教學(xué)重難點(diǎn)
熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
教學(xué)過(guò)程
【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問(wèn)題的關(guān)鍵是通過(guò)對(duì)實(shí)際問(wèn)題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練
1、某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘*一次一個(gè)*為兩個(gè),經(jīng)過(guò)3小時(shí),這種細(xì)菌由1個(gè)可繁殖成
A、511B、512C、1023D、1024
2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問(wèn)到第n期期末的`本金和是多少?
評(píng)析:此例來(lái)自一種常見(jiàn)的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時(shí)期到期,可以提出全部本金及利息,這是整取。計(jì)算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實(shí)際問(wèn)題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄,若每年利率q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長(zhǎng)期頑強(qiáng)的斗爭(zhēng),到1999年底全地區(qū)的綠化率已達(dá)到30%,從20xx年開(kāi)始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹(shù),改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?wèn)經(jīng)過(guò)多少年的努力才能使全縣的綠洲面積超過(guò)60%。lg2=0.3
例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門(mén)采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問(wèn)11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
【高一年級(jí)數(shù)學(xué)教案:等比數(shù)列的前n項(xiàng)和】相關(guān)文章:
數(shù)學(xué)教案-等比數(shù)列的前n項(xiàng)和08-17
《等比數(shù)列前n項(xiàng)和》說(shuō)課稿07-06
等比數(shù)列的前n項(xiàng)和教學(xué)設(shè)計(jì)06-07
上學(xué)期 3.5等比數(shù)列的前n項(xiàng)和08-17
數(shù)學(xué)教案-等差數(shù)列的前n項(xiàng)和08-17
上學(xué)期 3.3等差數(shù)列的前n項(xiàng)和08-17