天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高一數(shù)學(xué)教案>下學(xué)期>>4.3 任意角的三角函數(shù)

下學(xué)期>>4.3 任意角的三角函數(shù)

時(shí)間:2022-08-17 03:34:23 高一數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

下學(xué)期>>4.3 任意角的三角函數(shù)

任意角的三角函數(shù)

教學(xué)目標(biāo):

  1.通過(guò)對(duì)初中銳角三角函數(shù)定義的回憶,掌握任意角三角函數(shù)的定義法,并掌握用單位圓中的有向線段表示三角函數(shù)值.

  2.掌握已知角 終邊上一點(diǎn)坐標(biāo),求四個(gè)三角函數(shù)值.(即給角求值問(wèn)題)

教學(xué)重點(diǎn):

  任意角的三角函數(shù)的定義.

教學(xué)難點(diǎn):

  任意角的三角函數(shù)的定義,正弦、余弦、正切這三種三角函數(shù)的幾何表示.

教學(xué)用具:

  直尺、圓規(guī)、投影儀.

教學(xué)步驟:

1.設(shè)置情境

  角的范圍已經(jīng)推廣,那么對(duì)任一角 是否也能像銳角一樣定義其四種三角函數(shù)呢?本節(jié)課就來(lái)討論這一問(wèn)題.

2.探索研究

(1)復(fù)習(xí)回憶銳角三角函數(shù)

  我們已經(jīng)學(xué)習(xí)過(guò)銳角三角函數(shù),知道它們都是以銳角 為自變量,以比值為函數(shù)值,定義了角 的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角 是一個(gè)任意角時(shí),其三角函數(shù)的定義及其幾何表示.

(2)任意角的三角函數(shù)定義

  如圖1,設(shè) 是任意角, 的終邊上任意一點(diǎn) 的坐標(biāo)是 ,當(dāng)角 在第一、二、三、四象限時(shí)的情形,它與原點(diǎn)的距離為 ,則

定義:①比值 叫做 的正弦,記作 ,即

  ②比值 叫做 的余弦,記作 ,即

圖1

 、郾戎 叫做 的正切,記作 ,即

  同時(shí)提供顯示任意角的三角函數(shù)所在象限的課件

提問(wèn):對(duì)于確定的角 ,這三個(gè)比值的大小和 點(diǎn)在角 的終邊上的位置是否有關(guān)呢?

  利用三角形相似的知識(shí),可以得出對(duì)于角 ,這三個(gè)比值的大小與 點(diǎn)在角 的終邊上的位置無(wú)關(guān),只與角 的大小有關(guān).

  請(qǐng)同學(xué)們觀察當(dāng) 時(shí), 的終邊在 軸上,此時(shí)終邊上任一點(diǎn) 的橫坐標(biāo) 都等于0,所以 無(wú)意義,除此之外,對(duì)于確定的角 ,上面三個(gè)比值都是惟一確定的.把上面定義中三個(gè)比的前項(xiàng)、后項(xiàng)交換,那么得到另外三個(gè)定義.

 、鼙戎 叫做 的余切,記作 ,則

  ⑤比值 叫做 的正割,記作 ,則

 、薇戎 叫做 的余割,記作 ,則

可以看出:當(dāng) 時(shí), 的終邊在 軸上,這時(shí) 的縱坐標(biāo) 都等于0,所以 的值不存在,當(dāng) 時(shí), 的值不存在,除此之外,對(duì)于確定的角 ,比值 , , 分別是一個(gè)確定的實(shí)數(shù),所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數(shù)值的函數(shù),以上六種函數(shù)統(tǒng)稱三角函數(shù).

(3)三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)

  對(duì)于確定的角 ,如圖2所示, , 分別對(duì)應(yīng)的比值各是一個(gè)確定的實(shí)數(shù),因此,正弦,余弦,正切分別可看成從一個(gè)角的集合到一個(gè)比值的集合的映射,它們都是以角為自變量,以比值為函數(shù)值的函數(shù),當(dāng)采用弧度制來(lái)度量角時(shí),每一個(gè)確定的角有惟一確定的弧度數(shù),這是一個(gè)實(shí)數(shù),所以這幾種三角函數(shù)也都可以看成是以實(shí)數(shù)為自變量,以比值為函數(shù)值的函數(shù).

  即:實(shí)數(shù)角(其弧度數(shù)等于這個(gè)實(shí)數(shù))三角函數(shù)值(實(shí)數(shù))

(4)三角函數(shù)的一種幾何表示

  利用單位圓有關(guān)的有向線段,作出正弦線,余弦線,正切線,如下圖3.

圖3

  設(shè)任意角 的頂點(diǎn)在原點(diǎn) ,始邊與 軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn) ,過(guò) 軸的垂線,垂足為 ;過(guò)點(diǎn) 作單位圓的切線,這條切線必然平行于軸,設(shè)它與角 的終邊(當(dāng) 為第一、四象限時(shí))或其反向延長(zhǎng)線(當(dāng) 為第二、三象限時(shí))相交于 ,當(dāng)角 的終邊不在坐標(biāo)軸上時(shí),我們把 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數(shù)的定義有:

  這幾條與單位圓有關(guān)的有向線段 叫做角 的正弦線、余弦線、正切線.當(dāng)角 的終邊在 軸上時(shí),正弦線、正切線分別變成一個(gè)點(diǎn);當(dāng)角 的終邊在 軸上時(shí),余弦線變成一個(gè)點(diǎn),正切線不存在.

(5)例題講評(píng)

  【例1】已知角 的終邊經(jīng)過(guò) ,求 的六個(gè)三角函數(shù)值(如圖4).

解:∵    

  ∴

                                   

  

  

  

  

  

  提問(wèn):若將 改為 ,如何求 的六個(gè)三角函數(shù)值呢?(分 兩種情形討論)

【例2】求下列各角的六個(gè)三角函數(shù)值

 。1) ;(2) ;(3)

解:(1)∵當(dāng) 時(shí), ,

  ∴ ,

   不存在, , 不存在

  (2)∵當(dāng) 時(shí),

  ∴ ,

   不存在 

   不存在 

  (3)當(dāng) 時(shí),

  ∴                  

   不存在                  不存在

【例3】作出下列各角的正弦線,余弦線,正切線.(1) ;(2)

  解: , 的正弦線,余弦線,正切線分別為

【例4】求證:當(dāng) 為銳角時(shí),

  證明:如右圖,作單位圓,當(dāng) 時(shí)作出正弦線 和正切線 ,連

  ∵

  ∴

  ∴

利用三角函數(shù)線還可以得出如下結(jié)論

   的充要條件是 為第一象限角.

   的充要條件是 為第三象限角.

練習(xí)(學(xué)生板演,利用投影儀)

 。1)角 的終邊在直線 上,求 的六個(gè)三角函數(shù)值.

 。2)角 的終邊經(jīng)過(guò)點(diǎn) ,求 , , 的值.

  (3)說(shuō)明 的理由.

解答:

(1)先確定終邊位置

 、偃 在第一象限,在其上任取一點(diǎn) , ,則

   ,       

               

  ②如 在第三象限,在終邊上任取一點(diǎn) ,則

    ,        

                   

  (2)若 ,不妨令 ,則 在第二角限

  ∴                      

  (3)在 終邊上任取一點(diǎn) ,因?yàn)?sub> 與 終邊相同,故 也為角 終邊上一點(diǎn),所以 成立.

  說(shuō)明:以后會(huì)知道,求三角函數(shù)值的方法有多種途徑.用定義求角 的三角函數(shù)值,是基本方法之一.當(dāng)角終邊不確定時(shí),要首先確定終邊位置,然后再在終邊上取一個(gè)點(diǎn)來(lái)計(jì)算函數(shù)值.

3.反饋訓(xùn)練

(1)若角 終邊上有一點(diǎn) ,則下列函數(shù)值不存在的是(      ).

  A.     B.     C.    D.

(2)函數(shù) 的定義域是(       ).

  A.    B.

  C.     D.

(3)若 , 都有意義,則

(4)若角 的終邊過(guò)點(diǎn) ,且 ,則

參考答案:(1)D;(2)B;(3) 或8,說(shuō)明點(diǎn) 在半徑為 的圓上;(4)-6.

4.本課小結(jié)

  利用定義求三角函數(shù)值,首先要建立直角坐標(biāo)系,角頂點(diǎn)和始邊要按既定的位置設(shè)置.角 的三角函數(shù)定義式,其實(shí)是比例的化身,它的背后是相似形在支稱著,不過(guò)這個(gè)定義具有一般性,如軸上角的三角函數(shù),如果沒(méi)有定義作為論據(jù),欲求其函數(shù)性就不是很容易.

  分類討論(角位置)是三角函數(shù)求值過(guò)程中,使用頻率非常高的一個(gè)數(shù)學(xué)思想,而分類標(biāo)準(zhǔn)往往是四個(gè)象限及四個(gè)坐標(biāo)半軸.

課時(shí)作業(yè):

1.已知角 的終邊經(jīng)過(guò)下列各點(diǎn),求角 的六個(gè)三角函數(shù)值.

  (1)      (2)

2.計(jì)算

 。1)

  (2)

 。3)

  (4)

3.化簡(jiǎn)

 。1)

  (2)

 。3)

  (4)

參考答案:

1.(1) ,

      ,

      ,

  (2) ,

       ,

       ,

2.(1)-2;(2)8;(3)-1;(4)

3.(1)0;(2) ;(3) ;(4)


【下學(xué)期>>4.3 任意角的三角函數(shù)】相關(guān)文章:

《任意角的三角函數(shù)》教學(xué)反思04-20

任意角的三角函數(shù)教學(xué)反思04-07

《續(xù)編<刻舟求劍>》教學(xué)反思08-25

<食品衛(wèi)生法>執(zhí)行情況的報(bào)告08-17

讀孫犁《亡人逸事>兼談其散文藝術(shù)08-17

三角函數(shù)的誘導(dǎo)公式教學(xué)反思04-22

銳角三角函數(shù)教學(xué)反思03-04

讀<閱讀哈佛>有感08-22

高三數(shù)學(xué)教案《三角函數(shù)》08-22

高中數(shù)學(xué)《三角函數(shù)》教案10-19