- 相關推薦
上學期 1.1 集合
教學設計方案
集合
知識目標:
。1)使學生初步理解集合的概念,知道常用數集的概念及其記法
。2)使學生初步了解“屬于”關系的意義
。3)使學生初步了解有限集、無限集、空集的意義
能力目標:
(1)重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng);
(2)啟發(fā)學生能夠發(fā)現問題和提出問題,善于獨立思考,學會分析問題和創(chuàng)造地解決問題;
。3)通過教師指導發(fā)現知識結論,培養(yǎng)學生抽象概括能力和邏輯思維能力;
德育目標:
激發(fā)學生學習數學的興趣和積極性,陶冶學生的情操,培養(yǎng)學生堅忍不拔的意志,實事求是的科學學習態(tài)度和勇于創(chuàng)新的精神。
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:2課時
教 具:多媒體、實物投影儀
教學過程:
一、復習引入:
1.簡介數集的發(fā)展,復習最大公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數學家);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
(一)集合的有關概念(例子見書):
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合。
。2)元素:集合中每個對象叫做這個集合的元素。
2、常用數集及記法
。1)非負整數集(自然數集):全體非負整數的集合。記作N
。2)正整數集:非負整數集內排除0的集。記作N*或N+
。3)整數集:全體整數的集合。記作Z
(4)有理數集:全體有理數的集合。記作Q
(5)實數集:全體實數的集合。記作R
注:
(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。
。2)非負整數集內排除0的集。記作N*或N+ 、Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A;
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作 .
4、集合中元素的特性
。1)確定性:
按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可。
。2)互異性:
集合中的元素沒有重復。
(3)無序性:
集合中的元素沒有一定的順序(通常用正常的順序寫出)
注:
1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
練習題
1、教材P5練習
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數。 (不確定)
(2)好心的人。 (不確定)
。3)1,2,2,3,4,5.(有重復)
閱讀教材第二部分,問題如下:
1.集合的表示方法有幾種?分別是如何定義的?
2.有限集、無限集、空集的概念是什么?試各舉一例。
(二)集合的表示方法
1、列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合的方法。
例如,由方程 的所有解組成的集合,可以表示為{-1,1}.
注:(1)有些集合亦可如下表示:
從51到100的所有整數組成的集合:{51,52,53,…,100}
所有正奇數組成的集合:{1,3,5,7,…}
。2)a與{a}不同:a表示一個元素,{a}表示一個集合,該集合只有一個元素。
描述法:用確定的條件表示某些對象是否屬于這個集合,并把這個條件寫在大括號內表示集合的方法。
格式:{x∈A| P(x)}
含義:在集合A中滿足條件P(x)的x的集合。
例如,不等式 的解集可以表示為: 或
所有直角三角形的集合可以表示為:
注:(1)在不致混淆的情況下,可以省去豎線及左邊部分。
如:{直角三角形};{大于104的實數}
。2)錯誤表示法:{實數集};{全體實數}
3、文氏圖:用一條封閉的曲線的內部來表示一個集合的方法。
注:何時用列舉法?何時用描述法?
。1) 有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列舉法。
如:集合
(2) 有些集合的元素不能無遺漏地一一列舉出來,或者不便于、不需要一一列舉出來,常用描述法。
如:集合 ;集合{1000以內的質數}
注:集合 與集合 是同一個集合嗎?
答:不是。
集合 是點集,集合 = 是數集。
(三) 有限集與無限集
1、 有限集:含有有限個元素的集合。
2、 無限集:含有無限個元素的集合。
3、 空集:不含任何元素的集合。記作Φ,如:
練習題:
1、P6練習
2、用描述法表示下列集合
、賩1,4,7,10,13}
、趝-2,-4,-6,-8,-10}
3、用列舉法表示下列集合
、賩x∈N|x是15的約數} {1,3,5,15}
、趝(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}寫成{1,2}或{x=1,y=2}
、
④ {-1,1}
、 {(0,8)(2,5),(4,2)}
、
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小 結:
本節(jié)課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于、有限集、無限集、空集)
2.集合的表示方法:(列舉法、描述法、文氏圖共3種)
3.常用數集的定義及記法
四、課后作業(yè):教材P7習題1.1
五、課后反思:
本節(jié)課在教學時主要教會學生學習集合的表示方法,在認識集合時,應從兩方面入手:
。1)元素是什么?
(2)確定集合的表示方法是什么?表示集合時,與采用字母名稱無關。
【上學期 1.1 】相關文章:
基于DOCSIS1.1的新一代Cable Modem04-12
學期散學典禮上的講話08-21
在新學期班主任會議上的講話08-24
高中新學期開學典禮上的講話08-18
在新學期全校教職工會議上的講話08-19
在新學期級部教師會議上的講話08-24
上一學期數學教師個人總結09-30
高中校長在新學期開學典禮上的講話08-19
在新學期開學工作會議上的講話提綱08-19