一次函數(shù)
一次函數(shù)
【目的要求】1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
【教學(xué)重點、難點】一次函數(shù)以及正比例函數(shù)的解析式
【教學(xué)過程】
一、復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
二、新課講解:
可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是 (一定)
需指出,小學(xué)因為沒有學(xué)過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。
其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
三、課堂練習(xí):
課本后練習(xí)第1題.
四、答疑(老師在下面巡視,學(xué)生提問題)
五、小結(jié)
1) 什么是一次函數(shù)?它的解析式是什么?
2) 正比例函數(shù)呢?
六、課后作業(yè)
課本后習(xí)題1、2兩題
【一次函數(shù)】相關(guān)文章:
一次函數(shù)教學(xué)反思02-22
一次函數(shù)圖像教學(xué)反思08-25
一次函數(shù)教學(xué)反思15篇04-01
《一次函數(shù)》復(fù)習(xí)課教學(xué)反思04-21
初二數(shù)學(xué)一次函數(shù)教案12-09
數(shù)學(xué)教案:一次函數(shù)的表達式01-21
初二數(shù)學(xué)一次函數(shù)教案 6篇12-09
初二數(shù)學(xué)一次函數(shù)教案 (6篇)12-10
一次函數(shù)與一元一次不等式教學(xué)反思04-18
八年級數(shù)學(xué)下冊《一次函數(shù)》教學(xué)反思04-18