- 相關推薦
可化為一元二次方程的分式方程
一、教學目標
1.使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根.
2.通過本節(jié)課的教學,向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學思想方法;
3.通過本節(jié)的教學,繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀點.
二、重點·難點·疑點及解決辦法
1.教學重點:可化為一元二次方程的分式方程的解法.
2.教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.
3.教學疑點:學生容易忽視對分式方程的解進行檢驗通過對分式方程的解的剖析,進一步使學生認識解分式方程必須進行檢驗的重要性.
4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應盡量用換元法解.(2)無論用去分母法解,還是換元法解分式方程,都必須進行驗根,驗根是解分式方程必不可少的一個重要步驟.(3)方程的增根具備兩個特點,①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0.
三、教學步驟
(一)教學過程
1.復習提問
。1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?
。2)解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
。3)解方程,并由此方程說明解方程過程中產(chǎn)生增根的原因.
通過(1)、(2)、(3)的準備,可直接點出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同.
在教師點出本節(jié)內(nèi)容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質(zhì)量.
在前面的基礎上,為了加深學生對新知識的理解,教師與學生共同分析解決例題,以提高學生分析問題和解決問題的能力.
2.例題講解
例1 解方程.
分析 對于此方程的解法,不是教師講如何如何解,而是讓學生對已有知識的回憶,使用原來的方法,去通過試的手段來解決,在學生敘述過程中,發(fā)現(xiàn)問題并及時糾正.
解:兩邊都乘以,得
去括號,得
整理,得
解這個方程,得
檢驗:把代入,所以是原方程的根.
∴ 原方程的根是.
雖然,此種類型的方程在初二上學期已學習過,但由于相隔時間比較長,所以有一些學
生容易犯的類型錯誤應加以強調(diào),如在第一步中.需強調(diào)方程兩邊同時乘以最簡公分母.另
外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個相等的實數(shù)根,由于是解
分式方程,所以在下結論時,應強調(diào)取一即可,這一點,教師應給以強調(diào).
例2 解方程
分析:解此方程的關鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關鍵是
正確地確定出方程中各分母的最簡公分母,由于此方程中的分母并非均按的降冪排列,所
以將方程的分母作一轉(zhuǎn)化,化為按字母終X進行降暴排列,并對可進行分解的分母進行分解,從而確定出最簡公分母.
解:方程兩邊都乘以,約去分母,得
整理后,得
解這個方程,得
檢驗:把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根.
∴ 原方程的根是
師生共同解決例1、例2后,教師引導學生與已學過的知識進行比較.
例3 解方程.
分析:此題也可像前面例l、例2一樣通過去分母解決,學生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來難度很大,因此應尋求簡便方式,通過引導學生仔細觀察發(fā)現(xiàn),方程中含有未知數(shù)的部分 和互為倒數(shù),由此可設 ,則可通過換元法來解題,通過求出y后,再求原方程的未知數(shù)的值.
解:設,那么,于是原方程變形為
兩邊都乘以y,得
解得
.
當時,,去分母,得
解得;
當時,,去分母整理,得
,
檢驗:把分別代入原方程的分母,各分母均不等于0.
∴ 原方程的根是
,.
此題在解題過程中,經(jīng)過兩次“轉(zhuǎn)化”,所以在檢驗中,把所得的未知數(shù)的值代入原方程中的分母進行檢驗.
鞏固練習:教材P49中1、2引導學筆答.
。ǘ┛偨Y、擴展
對于小結,教師應引導學生做出.
本節(jié)內(nèi)容的小結應從所學習的知識內(nèi)容、所學知識采用了什么數(shù)學思想及教學方法兩方面進行.
本節(jié)我們通過類比的方法,在已有的解可化為一元一次方程的分式方程的基礎上,學習了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學思想與基本數(shù)學方法.
此小結的目的,使學生能利用“類比”的方法,使學過的知識系統(tǒng)化、網(wǎng)絡化,形成認知結構,便于學生掌握.
四、布置作業(yè)
1.教材P50中A1、2、3.
2.教材P51中B1、2
五、板書設計
探究活動1
解方程:
分析:若去分母,則會變?yōu)楦叽畏匠,這樣解起來,比較繁,注意到分母中都有,可用換元法降次
設,則原方程變?yōu)?/p>
∴
∴或無解
∴
經(jīng)檢驗:是原方程的解
探究活動2
有農(nóng)藥一桶,倒出8升后,用水補滿,然后又倒出4升,再用水補滿,此時農(nóng)藥與水的比為18:7,求桶的容積.
解:設桶的容積為 升,第一次用水補滿后,濃度為 ,第二次倒出的農(nóng)藥數(shù)為4. 升,兩次共倒出的農(nóng)藥總量(8+4· )占原來農(nóng)藥 ,故
整理,
(舍去)
答:桶的容積為40升.
【可化為一元二次方程的分式方程】相關文章:
《一元二次方程》教學反思08-22
一元二次方程教學反思04-04
《一元二次方程》教學反思11-10
《一元二次方程》數(shù)學教學反思06-07
解一元二次方程教學反思04-01
一元二次方程的解法教學反思04-04
一元二次方程的概念教學反思04-07
《一元二次方程》數(shù)學教案02-12
一元二次方程的教學反思(通用19篇)09-23
實際問題與一元二次方程教學反思04-02