- 相關(guān)推薦
數(shù)學(xué)教案-一元二次方程的應(yīng)用
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn):根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程(www.gymyzhishaji.com)
1.復(fù)習(xí)提問(wèn)
。1)列方程解應(yīng)用問(wèn)題的步驟?
、賹忣},②設(shè)未知數(shù),③列方程,④解方程,⑤答。
。2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
【數(shù)學(xué)教案-一元二次方程的應(yīng)用】相關(guān)文章:
《一元二次方程》教學(xué)反思08-22
一元二次方程教學(xué)反思04-04
《一元二次方程》教學(xué)反思11-10
《一元二次方程》數(shù)學(xué)教學(xué)反思06-07
解一元二次方程教學(xué)反思04-01
一元二次方程的解法教學(xué)反思04-04
一元二次方程的概念教學(xué)反思04-07