- 相關推薦
數(shù)學教案-一元二次方程的根的判別式(一)
1. 知識結構:
2. 重點、難點分析
。1)本節(jié)的重點是會用判別式判定根的情況.一元二次方程的根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也可以利用它進一步學習函數(shù)的有關內(nèi)容,所以,它是本節(jié)課的重點.
。2)本節(jié)的難點是一元二次方程根的三種情況的推導.教科書首先將一元二次方程用配方法變形為 .因為,所以方程右邊的符號就由來確定,而方程左邊的不可能是一個負數(shù),因此,把分三種情況來討論方程根的情況.推導過程中利用了分類的思想方法,對于分類討論學生感覺到較難,老師應該講明分類的基本思想。
3. 教法建議:
。1)引入要自然、合理
新課引入前,作一個鋪墊:前面我們講了一元二次方程的解法,我們掌握了開平方法、公式法和因式分解法后,就可以解任何一個一元二次方程,但是,存在這樣一個問題,并不是所有的一元二次方程都有解,我們可以通過把解求出來,來解方程,也可以通過判定方程無解,來解方程,這樣我們就面臨著一個問題,什么時候方程有解?什么時候方程無解?我們不解方程能不能判定根的情況?那就是我們本節(jié)所要研究的問題.讓學生首先感覺到所要學習的知識并不突然,也顯露了本節(jié)課的重點.
。2)利用多媒體進行教學
本節(jié)是根的判別式結論的推導,比較抽象,為了便于學生理解,使用所提供的動畫,有助于學生對所講內(nèi)容的理解,調(diào)動學生主動思維的積極性,活躍課堂氣氛,提高學習效率.
。3)本節(jié)在推導根的判別式的結論時,利用了分類的思想,對于學生這是一個難點,一定給學生講清楚分類的依據(jù),分類的基本思想,使學生對所得結論深信不疑.
一、教學目標
1. 理解一元二次方程的根的判別式,并能用判別式判定根的情況;
2. 通過根的判別式的學習,培養(yǎng)學生從具體到抽象的觀察、分析、歸納的能力;
3.通過根的情況的研究過程,讓學生深刻體會轉化和分類的思想方法.
二、重點·難點及解決辦法
1.教學重點:會用判別式判定根的情況。
2.教學難點:一元二次方程根的三種情況的推導.
3.解決辦法:(1)求判別式時,應先將方程化為一般形式,確定a、b、c。(2)利用判別式可以判定一元二次方程的存在性情況(共四種);方程有兩個實數(shù)根,方程有兩個不相等的實數(shù)根,方程有兩個相等的實數(shù)根,方程沒有實數(shù)根。
三、教學步驟
(一)教學過程(www.gymyzhishaji.com)
1.復習提問
。1)平方根的性質是什么?
。2)解下列方程:① ;② ;③ 。
問題(1)為本節(jié)課結論的得出起到了一個很好的鋪墊作用。問題(2)通過自己親身感受的根的情況,對本節(jié)課的結論的得出起到了一個推波助瀾的作用。
2.任何一個一元二次方程 用配方法將其變形為 ,因此對于被開方數(shù) 來說,只需研究 為如下幾種情況的方程的根。
。1)當 時,方程有兩個不相等的實數(shù)根。
即
。2)當 時,方程有兩個相等的實數(shù)根,即 。
。3)當 時,方程沒有實數(shù)根。
教師通過引導之后,提問:究竟誰決定了一元二次方程根的情況?
答: 。
3.①定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。
、谝辉畏匠 。
當 時,有兩個不相等的實數(shù)根;
當 時,有兩個相等的實數(shù)根;
當 時,沒有實數(shù)根。
反之亦然。
注意以下幾個問題:
。1) 這一重要條件在這里起了“承上啟下”的作用,即對上式開平方,隨后有下面三種情況。正確得出三種情況的結論,需對平方根的概念有一個深刻的、正確的理解,所以,在課前進行了鋪墊。在這里應向學生滲透轉化和分類的思想方法。
。2)當 ,說“方程 沒有實數(shù)根”比較好。有時,也說“方程無解”。這里的前提是“在實數(shù)范圍內(nèi)無解”,也就是方程無實數(shù)根的意思。
4.例題講解
例1 不解方程,判別下列方程的根的情況:
。1) ;(2) ;(3) 。
解:(1)
∴原方程有兩個不相等的實數(shù)根。
(2)原方程可變形為
。
,
∴原方程有兩個相等的實數(shù)根。
(3)原方程可變形為
。
∴原方程沒有實數(shù)根。
學生口答,教師板書,引導學生總結步驟,(1)化方程為一般形式,確定a、b、c的(2)計算 的值;(3)判別根的情況。
強調(diào)兩點:(1)只要能判別 值的符號就行,具體數(shù)值不必計算出。(2)判別根據(jù)的情況,不必求出方程的根。
練習:不解方程,判別下列方程的情況:
。1) ;(2) ;
。3) ;(4) ;
。5) ;(6)
學生板演、筆答、評價。
。4)題可去括號,化一般式進行判別,也可設 ,判別方程 根的情況,由此判別原方程根的情況。
例2 不解方程,判別方程 的根的情況。
解: 。
又 ∵ 不論k取何實數(shù), ,
∴ 原方程有兩個實數(shù)根。
教師板書,引導學生回答。此題是含有字母系數(shù)的一元二次方程。注意字母的取值范圍,從而確定 的取值。
練習:不解方程,判別下列方程根的情況。
。1) ;
。2) ;
。3) 。
學生板演、筆答、評價。教師滲透、點撥。
(3)解:
∵ 不論m取何值, ,即 。
∴ 方程無實數(shù)解。
由數(shù)字系數(shù),過渡到字母系數(shù),使學生體會到由具體到抽象,并且注意字母的取值。
(二)總結、擴展
1.判別式的意義及一元二次方程根的情況。
。1)定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。
(2)一元二次方程 。
當 時,有兩個不相等的實數(shù)根;
當 時,有兩個相等的實數(shù)根;
當 時,沒有實數(shù)根。反之亦然。
2.通過根的情況的研究過程,深刻體會轉化的思想方法及分類的思想方法。
四、布置作業(yè)
教材P27A1~4。
5.不解方程,判斷下x的方程的根的情況
。1)
。2)
五、板書設計
【數(shù)學教案-一元二次方程的根的判別式一】相關文章:
《一元二次方程》數(shù)學教案02-12
初中數(shù)學一元二次方程根與系數(shù)關系教案12-29
《一元二次方程》教學反思08-22
一元二次方程教學反思04-04
《一元二次方程》教學反思11-10
《一元二次方程》數(shù)學教學反思06-07
解一元二次方程教學反思04-01
一元二次方程的解法教學反思04-04
一元二次方程的概念教學反思04-07