天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>角的平分線 —— 初中數(shù)學第四冊教案

角的平分線 —— 初中數(shù)學第四冊教案

時間:2022-08-17 01:52:51 八年級數(shù)學教案 我要投稿
  • 相關(guān)推薦

角的平分線 —— 初中數(shù)學第四冊教案


3.9角的平分線

角的平分線 —— 初中數(shù)學第四冊教案

教學目標

1.掌握角的平分線的性質(zhì)定理和它的逆定理的內(nèi)容、證明及應用.

2.理解原命題和逆命題的概念和關(guān)系,會找一個簡單命題的逆命題.

3.滲透角平分線是滿足特定條件的點的集合的思想。

教學重點和難點

角平分線的性質(zhì)定理和逆定理的應用是重點.

性質(zhì)定理和判定定理的區(qū)別和靈活運用是難點.

教學過程設(shè)計

一、角平分錢的性質(zhì)定理與判定定理的探求與證明

1,復習引入課題.

(1)提問關(guān)于直角三角形全等的判定定理.

(2)讓學生用量角器畫出圖3-86中的∠AOB的角

平分線OC.

2.畫圖探索角平分線的性質(zhì)并證明之.

(1)在圖3-86中,讓學生在角平分線OC上任取一

點P,并分別作出表示P點到∠AOB兩邊的距離的線段

PD,PE.

(2)這兩個距離的大小之間有什么關(guān)系?為什么?學生度量后得出猜想,并用直角三角形全等的知識進行證明,得出定理.

(3)引導學生敘述角平分線的性質(zhì)定理(定理1),分析定理的條件、結(jié)論,并根據(jù)相應圖形寫出表達式.

 

3.逆向思維探求角平分線的判定定理.

(1)讓學生將定理1的條件、結(jié)論進行交換,并思考所得命題是否成立?如何證明?請一位同學敘述證明過程,得出定理2——角平分線的判定定理.

(2)教師隨后強調(diào)定理1與定理2的區(qū)別:已知角平分線用性質(zhì)為定理1,由所給條件判定出角平分線是定理2.

(3)教師指出:直接使用兩個定理不用再證全等,可簡化解題過程.

4.理解角平分線是到角的兩邊距離都相等的點的集合.

(1)角平分線上任意一點(運動顯示)到角的兩邊的距離都相等(滲透集合的純粹性).

(2)在角的內(nèi)部,到角的兩邊距離相等的點(運動顯示)都在這個角的平分線上(而不在其它位置,滲透集合的完備性).

由此得出結(jié)論:角的平分線是到角的兩邊距離相等的所有點的集合.

二、應用舉例、變式練習

練習1填空:如圖3-86(1)∵OC平分∠AOB,點P在射線OC上,PD⊥OA于D

PE⊥OB于E.∴---------(角平分線的性質(zhì)定理).

(2)∵PD⊥OA,PE⊥OB,----------∴ OP平分∠AOB(-------------)     

例1已知:如圖3-87(a),     ABC的角平分線BD和CE交于F.

(l)求證:F到AB,BC和 AC邊的距離相等;

(2)求證:AF平分∠BAC;

(3)求證:三角形中三條內(nèi)角的平分線交于一點,而且這點到三角形三邊的距離相等;

(4)怎樣找△ABC內(nèi)到三邊距離相等的點?

(5)若將“兩內(nèi)角平分線BD,CE交于F”改為“△ABC的兩個外角平分線BD,CE交于F,如圖3-87(b),那么(1)~(3)題的結(jié)論是否會改變?怎樣找△ABC外到三邊所在直線距離相等的點?共有多少個?

說明:

(1)通過此題達到鞏固角平分線的性質(zhì)定理(第(1)題)和判定定理(第(2)題)的目的.

(2)此題提供了證明“三線共點”的一種常用方法:先確定兩條直線交于某一點,再證明這點在第三條直線上。

(3)引導學生對題目的條件進行類比聯(lián)想(第(5)題),觀察結(jié)論如何變化,培養(yǎng)發(fā)散思維能力.

練習2已知△ABC,在△ABC內(nèi)求作一點P,使它到△ABC三邊的距離相等.

練習 3已知:如圖 3-88,在四邊形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求證:點 C在∠DAB的平分線上.

 

例2已知:如圖 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求證:(1)OC=OD;(2)OE垂直平分CD.

分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到 OC=OD.這樣處理,可避免證明兩個三角形全等.

練習4  課本第54頁的練習.

說明:訓練學生將生活語言翻譯成數(shù)學語言的能力.

三、互逆命題,互逆定理的定義及應用

1.互逆命題、互逆定理的定義.

教師引導學生分析角平分線的性質(zhì),判定定理的題設(shè)、結(jié)論,使學生看到這兩個命題的題設(shè)和結(jié)論正好相反,得出互逆命題、互逆定理的定義,并舉出學過的互逆命題、互逆定理的例子.教師強調(diào)“互逆命題”是兩個命題之間的關(guān)系,其中任何一個做為原命題,那么另一個就是它的逆命題.

2.會找一個命題的逆命題,并判定它是真、假命題.

例3寫出下列命題的逆命題,并判斷(1)~(5)中原命題和它的逆命題是真命題還是假命題:

(1)兩直線平行,同位角相等;

(2)直角三角形的兩銳角互余;

(3)對頂角相等;

(4)全等三角形的對應角相等;

(5)如果|x|=|y|,那么x=y(tǒng);

(6)等腰三角形的兩個底角相等;

(7)直角三角形兩條直角邊的平方和等于斜邊的平方.

說明:注意逆命題語言的準確描述,例如第(6)題的逆命題不能說成是“兩底角相等的三角形是等腰三角形”.

3.理解互逆命題、互逆定理的有關(guān)結(jié)論.

例4  判斷下列命題是否正確:

(1)錯誤的命題沒有逆命題;

(2)每個命題都有逆命題;

(3)一個真命題的逆命題一定是正確的;

(4)一個假命題的逆命題一定是錯誤的;

(5)每一個定理都一定有逆定理.

通過此題使學生理解互逆命題的真假性關(guān)系及互逆定理的定義.

四、師生共同小結(jié)

1.角平分線的性質(zhì)定理與判定定理的條件內(nèi)容分別是什么?

2.三角形的角平分線有什么性質(zhì)?怎樣找三角形內(nèi)到三角形三邊距離相等的點?

3.怎樣找一個命題的逆命題?原命題與逆命題是否同真、同假?

五、作業(yè)

課本第55頁第3,5,6,7,8,9題.

課堂教學設(shè)計說明

本教學設(shè)計需2課時完成.

角平分線是符合某種條件的動點的集合,因此,利用教具,投影或計算機演示動點運動的過程和規(guī)律,更能展示知識的形成過程,有利于學生自己觀察,探索新知識,從中提高興趣,以充分培養(yǎng)能力,發(fā)揮學生學習的主動性.

 

3.9角的平分線

教學目標

1.掌握角的平分線的性質(zhì)定理和它的逆定理的內(nèi)容、證明及應用.

2.理解原命題和逆命題的概念和關(guān)系,會找一個簡單命題的逆命題.

3.滲透角平分線是滿足特定條件的點的集合的思想。

教學重點和難點

角平分線的性質(zhì)定理和逆定理的應用是重點.

性質(zhì)定理和判定定理的區(qū)別和靈活運用是難點.

教學過程設(shè)計

一、角平分錢的性質(zhì)定理與判定定理的探求與證明

1,復習引入課題.

(1)提問關(guān)于直角三角形全等的判定定理.

(2)讓學生用量角器畫出圖3-86中的∠AOB的角

平分線OC.

2.畫圖探索角平分線的性質(zhì)并證明之.

(1)在圖3-86中,讓學生在角平分線OC上任取一

點P,并分別作出表示P點到∠AOB兩邊的距離的線段

PD,PE.

(2)這兩個距離的大小之間有什么關(guān)系?為什么?學生度量后得出猜想,并用直角三角形全等的知識進行證明,得出定理.

(3)引導學生敘述角平分線的性質(zhì)定理(定理1),分析定理的條件、結(jié)論,并根據(jù)相應圖形寫出表達式.

 

3.逆向思維探求角平分線的判定定理.

(1)讓學生將定理1的條件、結(jié)論進行交換,并思考所得命題是否成立?如何證明?請一位同學敘述證明過程,得出定理2——角平分線的判定定理.

(2)教師隨后強調(diào)定理1與定理2的區(qū)別:已知角平分線用性質(zhì)為定理1,由所給條件判定出角平分線是定理2.

(3)教師指出:直接使用兩個定理不用再證全等,可簡化解題過程.

4.理解角平分線是到角的兩邊距離都相等的點的集合.

(1)角平分線上任意一點(運動顯示)到角的兩邊的距離都相等(滲透集合的純粹性).

(2)在角的內(nèi)部,到角的兩邊距離相等的點(運動顯示)都在這個角的平分線上(而不在其它位置,滲透集合的完備性).

由此得出結(jié)論:角的平分線是到角的兩邊距離相等的所有點的集合.

二、應用舉例、變式練習

練習1填空:如圖3-86(1)∵OC平分∠AOB,點P在射線OC上,PD⊥OA于D

PE⊥OB于E.∴---------(角平分線的性質(zhì)定理).

(2)∵PD⊥OA,PE⊥OB,----------∴ OP平分∠AOB(-------------)     

例1已知:如圖3-87(a),     ABC的角平分線BD和CE交于F.

(l)求證:F到AB,BC和 AC邊的距離相等;

(2)求證:AF平分∠BAC;

(3)求證:三角形中三條內(nèi)角的平分線交于一點,而且這點到三角形三邊的距離相等;

(4)怎樣找△ABC內(nèi)到三邊距離相等的點?

(5)若將“兩內(nèi)角平分線BD,CE交于F”改為“△ABC的兩個外角平分線BD,CE交于F,如圖3-87(b),那么(1)~(3)題的結(jié)論是否會改變?怎樣找△ABC外到三邊所在直線距離相等的點?共有多少個?

說明:

(1)通過此題達到鞏固角平分線的性質(zhì)定理(第(1)題)和判定定理(第(2)題)的目的.

(2)此題提供了證明“三線共點”的一種常用方法:先確定兩條直線交于某一點,再證明這點在第三條直線上。

(3)引導學生對題目的條件進行類比聯(lián)想(第(5)題),觀察結(jié)論如何變化,培養(yǎng)發(fā)散思維能力.

練習2已知△ABC,在△ABC內(nèi)求作一點P,使它到△ABC三邊的距離相等.

練習 3已知:如圖 3-88,在四邊形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求證:點 C在∠DAB的平分線上.

 

例2已知:如圖 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求證:(1)OC=OD;(2)OE垂直平分CD.

分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到 OC=OD.這樣處理,可避免證明兩個三角形全等.

練習4  課本第54頁的練習.

說明:訓練學生將生活語言翻譯成數(shù)學語言的能力.

三、互逆命題,互逆定理的定義及應用

1.互逆命題、互逆定理的定義.

教師引導學生分析角平分線的性質(zhì),判定定理的題設(shè)、結(jié)論,使學生看到這兩個命題的題設(shè)和結(jié)論正好相反,得出互逆命題、互逆定理的定義,并舉出學過的互逆命題、互逆定理的例子.教師強調(diào)“互逆命題”是兩個命題之間的關(guān)系,其中任何一個做為原命題,那么另一個就是它的逆命題.

2.會找一個命題的逆命題,并判定它是真、假命題.

例3寫出下列命題的逆命題,并判斷(1)~(5)中原命題和它的逆命題是真命題還是假命題:

(1)兩直線平行,同位角相等;

(2)直角三角形的兩銳角互余;

(3)對頂角相等;

(4)全等三角形的對應角相等;

(5)如果|x|=|y|,那么x=y(tǒng);

(6)等腰三角形的兩個底角相等;

(7)直角三角形兩條直角邊的平方和等于斜邊的平方.

說明:注意逆命題語言的準確描述,例如第(6)題的逆命題不能說成是“兩底角相等的三角形是等腰三角形”.

3.理解互逆命題、互逆定理的有關(guān)結(jié)論.

例4  判斷下列命題是否正確:

(1)錯誤的命題沒有逆命題;

(2)每個命題都有逆命題;

(3)一個真命題的逆命題一定是正確的;

(4)一個假命題的逆命題一定是錯誤的;

(5)每一個定理都一定有逆定理.

通過此題使學生理解互逆命題的真假性關(guān)系及互逆定理的定義.

四、師生共同小結(jié)

1.角平分線的性質(zhì)定理與判定定理的條件內(nèi)容分別是什么?

2.三角形的角平分線有什么性質(zhì)?怎樣找三角形內(nèi)到三角形三邊距離相等的點?

3.怎樣找一個命題的逆命題?原命題與逆命題是否同真、同假?

五、作業(yè)

課本第55頁第3,5,6,7,8,9題.

課堂教學設(shè)計說明

本教學設(shè)計需2課時完成.

角平分線是符合某種條件的動點的集合,因此,利用教具,投影或計算機演示動點運動的過程和規(guī)律,更能展示知識的形成過程,有利于學生自己觀察,探索新知識,從中提高興趣,以充分培養(yǎng)能力,發(fā)揮學生學習的主動性.

 



【角的平分線 —— 初中數(shù)學第四冊教案】相關(guān)文章:

數(shù)學角平分線教學反思03-15

角平分線教學反思08-25

角平分線教學反思01-27

角的平分線的性質(zhì)教學反思04-09

角平分線教學反思18篇07-17

角平分線教學反思(15篇)04-05

角平分線教學反思 15篇01-27

角平分線教學反思匯編15篇06-14

角平分線教學反思集錦15篇04-05

數(shù)學《角的度量》教案01-24