- 相關(guān)推薦
多邊形的內(nèi)角和 教學(xué)設(shè)計(jì)示例3
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用.
(二)能力訓(xùn)練點(diǎn)
1.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力.
2.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想.
3.會(huì)根據(jù)比較簡(jiǎn)單的條件畫(huà)出指定的四邊形.
4.講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類(lèi)比思想.
。ㄈ┑掠凉B透點(diǎn)
使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣.
。ㄋ模┟烙凉B透點(diǎn)
通過(guò)四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美.
二、學(xué)法引導(dǎo)
類(lèi)比、觀察、引導(dǎo)、講解
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問(wèn)題.
2.教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問(wèn)題;四邊形不穩(wěn)定性的理解和應(yīng)用.
3.疑點(diǎn)及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒(méi)有呢?根據(jù)指定條件畫(huà)四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角.
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類(lèi)比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料.
第2課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?
2.如圖4-9, 求 的度數(shù)(打出投影).
【引入新課】
前面我們學(xué)習(xí)過(guò)三角形的外角的概念,并知道外角和是360°.類(lèi)似地,四邊形也有外角,而它的外角和是多少呢?我們還學(xué)習(xí)了三角形具有穩(wěn)定性,而四邊形就不具有這種性質(zhì),為什么?下面就來(lái)研究這些問(wèn)題.
【講解新課】
1.四邊形的外角
與三角形類(lèi)似,四邊形的角的一邊與另一邊延長(zhǎng)線所組成的角叫做四邊形的外角,四邊形每一個(gè)頂點(diǎn)處有兩個(gè)外角,這兩個(gè)外角是對(duì)頂角,所以它們是相等的.四邊形的外角與它有公共頂點(diǎn)的內(nèi)角互為鄰補(bǔ)角,即它們的和等于180°,如圖4-10.
2.外角和定理
例1 已知:如圖4-11,四邊形ABCD的四個(gè)內(nèi)角分別為 ,每一個(gè)頂點(diǎn)處有一個(gè)外角,設(shè)它們分別為 .
求 .
(1)向?qū)W生介紹四邊形外角和這一概念(取四邊形的每一個(gè)內(nèi)角的一個(gè)鄰補(bǔ)角相加的和).
(2)教給學(xué)生一組外角的畫(huà)法——同向法.
即按順時(shí)針?lè)较蛞来窝娱L(zhǎng)各邊,如圖4—11,或按逆時(shí)針?lè)较蛞来窝娱L(zhǎng)各邊,如圖4-12,這四個(gè)外角和就是四邊形的外角和.
(3)利用每一個(gè)外角與其鄰補(bǔ)角的關(guān)系及四邊形內(nèi)角和為360°.
證得:
360°
外角和定理:四邊形的外角和等于360°
3.四邊形的不穩(wěn)定性
、傥覀冎廊切尉哂蟹(wěn)定性,已知三個(gè)條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會(huì)嗎?
(學(xué)生回答)
、谌粢 為邊作四邊形ABCD.
提示畫(huà)法:①畫(huà)任意小于平角的 .
②在 的兩邊上截取 .
③分別以A,C為圓心,以12mm,18mm為半徑畫(huà)弧,兩弧相交于D點(diǎn).
④連結(jié)AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.
大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因?yàn)?的大小不固定,所以四邊形的形狀不確定.
、郏ń處熝菔荆河盟母緱l釘成如圖4-14的框)雖然四邊形的邊長(zhǎng)不變,但它的形狀改變了,這說(shuō)明四邊形沒(méi)有穩(wěn)定性.
教師指出,“不穩(wěn)定”是四邊形的一個(gè)重要性質(zhì),還應(yīng)使學(xué)生明確:
、偎倪呅胃淖冃螤顣r(shí)只改變某些角的大小,它的邊長(zhǎng)不變,因而周長(zhǎng)不變它仍為四邊形,所以它的內(nèi)角和不變.②對(duì)四條邊長(zhǎng)固定的四邊形任何一個(gè)角固定或者一條對(duì)角線的長(zhǎng)一定,四邊形的形狀就固定了,如教材P125中2的第H問(wèn),為克服不穩(wěn)定性提供了理論根據(jù).
(4)舉出四邊形不穩(wěn)定性的應(yīng)用實(shí)例和克服不穩(wěn)定的實(shí)例,向?qū)W生進(jìn)行理論聯(lián)系實(shí)際的教育.
【總結(jié)、擴(kuò)展】
1.小結(jié):
(1)四邊形外角概念、外角和定理.
(2)四邊形不穩(wěn)定性的應(yīng)用和克服不穩(wěn)定性的理論根據(jù).
2.?dāng)U展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積
八、布置作業(yè)
教材P128中4.
九、板書(shū)設(shè)計(jì)
十、隨堂練習(xí)
教材P124中1、2
補(bǔ)充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.
(2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度
。3)在四邊形的四個(gè)外角中,最多有_______個(gè)鈍角,最多有_____個(gè)銳角,最多有____個(gè)直角.
【多邊形的內(nèi)角和 教學(xué)設(shè)計(jì)示例3】相關(guān)文章:
《多邊形的內(nèi)角和》數(shù)學(xué)教案02-09
初中數(shù)學(xué)多邊形的內(nèi)角教案3篇01-02
初中數(shù)學(xué)多邊形的內(nèi)角教案12-30
銀行的業(yè)務(wù)和作用 教學(xué)設(shè)計(jì)示例(二)05-01
《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)與反思08-24
多邊形的外角和教學(xué)反思02-24
《多邊形的外角和》教學(xué)反思03-14