- 相關(guān)推薦
數(shù)學(xué)教案-梯形 教學(xué)設(shè)計(jì)示例2
一、教學(xué)目標(biāo)
1. 掌握等腰梯形的判定方法.
2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.
3. 通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想
二、教法設(shè)計(jì)
小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固
三、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):等腰梯形判定.
2.教學(xué)難點(diǎn):解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
多媒體,小黑板,常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見(jiàn)的輔助線
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
3.在研究解決梯形問(wèn)題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來(lái)判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來(lái)研究這個(gè)問(wèn)題.
【引人新課】
等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形.
前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來(lái)證明等腰梯形的判定定理.
例1已知:如圖,在梯形 中, , ,求證: .
分析:我們學(xué)過(guò)“如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對(duì)的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,定理就容易證明了.
。ㄒ龑(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)
。1)如圖,過(guò)點(diǎn) 作 、 ,交 于 ,得 ,所以得 .
又由 得 ,因此可得 .
。2)作高 、 ,通過(guò)證 推出 .
。3)分別延長(zhǎng) 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .
。ㄗC明過(guò)程略).
例3 求證:對(duì)角線相等的梯形是等腰梯形.
已知:如圖,在梯形 中, , .
求證: .
分析:證明本題的關(guān)鍵是如何利用對(duì)角線相等的條件來(lái)構(gòu)造等腰三角形.
在 和 中,已有兩邊對(duì)應(yīng)相等,別人要能證 ,就可通過(guò)證 得到 .
。ㄒ龑(dǎo)學(xué)生說(shuō)出證明思路,教師板書證明過(guò)程)
證明:過(guò)點(diǎn) 作 ,交 延長(zhǎng)線于 ,得 ,
∴ .
∵ , ∴
∴
∵ , ∴
又∵ 、 ,∴
∴ .
說(shuō)明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對(duì)角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個(gè)等腰三角形,這個(gè)結(jié)論雖不能直接引用,但可以為以后解題提供思路.
例4 畫一等腰梯形,使它上、下底長(zhǎng)分別5cm,高為4cm,并計(jì)算這個(gè)等腰梯形的周長(zhǎng)和面積.
分析:如圖,先算出 長(zhǎng),可畫等腰三角形 ,然后完成 的畫圖.
畫法:①畫 ,使 .
.
、谘娱L(zhǎng) 到 使 .
、鄯謩e過(guò) 、 作 , , 、 交于點(diǎn) .
四邊形 就是所求的等腰梯形.
解:梯形 周長(zhǎng) .
答:梯形周長(zhǎng)為26cm,面積為 .
【總結(jié)、擴(kuò)展】
小結(jié):(由學(xué)生總結(jié))
。╨)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來(lái)判定它是等腰梯形.
。2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)
八、布置作業(yè)
l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.
九、板書設(shè)計(jì)
十、隨堂練習(xí)
教材P177中l(wèi);P179中B組2
【數(shù)學(xué)教案-梯形 教學(xué)設(shè)計(jì)示例2】相關(guān)文章:
《認(rèn)識(shí)梯形》的數(shù)學(xué)教案08-26
中班數(shù)學(xué)教案《梯形》08-23
中班數(shù)學(xué)教案:梯形02-27
認(rèn)識(shí)梯形數(shù)學(xué)教案02-11
梯形教學(xué)反思04-13
認(rèn)識(shí)梯形中班數(shù)學(xué)教案04-23
幼兒園數(shù)學(xué)教案梯形03-06