天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>完全平方公式的教學(xué)設(shè)計(jì)

完全平方公式的教學(xué)設(shè)計(jì)

時(shí)間:2024-11-06 17:30:05 煒玲 八年級(jí)數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

完全平方公式的教學(xué)設(shè)計(jì)(精選13篇)

  作為一位優(yōu)秀的人民教師,常常需要準(zhǔn)備教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更好地組織教學(xué)活動(dòng)。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編精心整理的完全平方公式的教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。

完全平方公式的教學(xué)設(shè)計(jì)(精選13篇)

  完全平方公式的教學(xué)設(shè)計(jì) 1

  一、內(nèi)容簡(jiǎn)介

  本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  關(guān)鍵信息:

  1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

  2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

  二、學(xué)習(xí)者分析:

  1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:

 、偻(lèi)項(xiàng)的定義。

  ②合并同類(lèi)項(xiàng)法則

 、鄱囗(xiàng)式乘以多項(xiàng)式法則。

  2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

  在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):

  (一)教學(xué)目標(biāo):

  1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

  2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  (二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

  (四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

  (五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。

  四、 教育理念和教學(xué)方式:

  1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的'心靈去親自感悟。

  教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。

  2、采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開(kāi)教學(xué)。

  3、教學(xué)評(píng)價(jià)方式:

  (1) 通過(guò)課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。

  (2) 通過(guò)判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過(guò)程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。

  (3) 通過(guò)課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。

  完全平方公式的教學(xué)設(shè)計(jì) 2

  教學(xué)目標(biāo)

  1.了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問(wèn)題;

  2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

  3.通過(guò)本節(jié)課的教學(xué),使學(xué)生初步了解公式來(lái)源于實(shí)踐又反作用于實(shí)踐。

  教學(xué)建議

  一、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):通過(guò)具體例子了解公式、應(yīng)用公式.

  難點(diǎn):從實(shí)際問(wèn)題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來(lái)的歸納的思想方法。

  二、重點(diǎn)、難點(diǎn)分析

  人們從一些實(shí)際問(wèn)題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫(xiě)成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來(lái);有的公式,則可以通過(guò)實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來(lái)。用這些抽象出的具有一般性的公式解決一些問(wèn)題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。

  三、知識(shí)結(jié)構(gòu)

  本節(jié)一開(kāi)始首先概述了一些常見(jiàn)的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過(guò)觀察歸納推導(dǎo)公式解決一些實(shí)際問(wèn)題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。

  2.在教學(xué)過(guò)程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問(wèn)題的解決并沒(méi)有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過(guò)分析和具體運(yùn)算推導(dǎo)新公式。

  3.在解決實(shí)際問(wèn)題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問(wèn)題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過(guò)程,有助于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。

  教學(xué)設(shè)計(jì)示例

  公式

  一、教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問(wèn)題.

  2.使學(xué)生理解公式與代數(shù)式的關(guān)系.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.利用數(shù)學(xué)公式解決實(shí)際問(wèn)題的能力.

  2.利用已知的公式推導(dǎo)新公式的能力.

 。ㄈ┑掠凉B透點(diǎn)

  數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過(guò)來(lái)服務(wù)于生產(chǎn)實(shí)踐.

 。ㄋ模┟烙凉B透點(diǎn)

  數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問(wèn)題,形成了色彩斑斕的.多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美.

  二、學(xué)法引導(dǎo)

  1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問(wèn)小學(xué)里學(xué)過(guò)的公式為基礎(chǔ)、突破難點(diǎn)

  2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式.

  2.難點(diǎn):同重點(diǎn).

  3.疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀,自制膠片。

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情景,復(fù)習(xí)引入

  師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開(kāi)始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏.

  在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問(wèn)題.

  板書(shū):公式

  師:小學(xué)里學(xué)過(guò)哪些面積公式?

  板書(shū):S=ah

 。ǔ鍪就队1)。解釋三角形,梯形面積公式

  【教法說(shuō)明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。

  完全平方公式的教學(xué)設(shè)計(jì) 3

  學(xué)習(xí)目標(biāo):

  1、經(jīng)歷探索完全平方公式的過(guò)程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。

  2、會(huì)推導(dǎo)完全平方公式,了解公式的幾何背景,會(huì)用公式計(jì)算。

  3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

  學(xué)習(xí)重點(diǎn):

  會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  學(xué)習(xí)難點(diǎn):

  掌握完全平方公式的.結(jié)構(gòu)特征,理解公式中a、b的廣泛含義。

  學(xué)習(xí)過(guò)程:

  一、學(xué)習(xí)準(zhǔn)備

  1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2(a—b)2

  2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱(chēng)為完全平方公式。

  嘗試用自己的語(yǔ)言敘述完全平方公式:

  3、完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。

  4、完全平方公式的結(jié)構(gòu)特征:

 。╝+b)2=a2+2ab+b2

 。╝—b)2=a2—2ab+b2

  左邊是形式,右邊有三項(xiàng),其中兩項(xiàng)是形式,另一項(xiàng)是()

  注意:公式中字母的含義廣泛,可以是,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□±△)=□2±2□△+△2

  5、兩個(gè)完全平方公式的轉(zhuǎn)化:(a—b)2= 2=()2+2()+()2=()

  二、合作探究

  1、利用乘法公式計(jì)算:

 。3a+2b)2(2)(—4x2—1)2

  分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a,哪個(gè)式子相當(dāng)于公式中的b

  2、利用乘法公式計(jì)算:

  992(2)()2

  分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化()2,()2可以轉(zhuǎn)化為()2。

  3、利用完全平方公式計(jì)算:

 。╝+b+c)2(2)(a—b)3

  三、學(xué)習(xí)

  對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測(cè)試

  1、下列計(jì)算是否正確,若不正確,請(qǐng)訂正;

 。1)(—1+3a)2=9a2—6a+1

  (2)(3x2—)2=9x4—

 。3)(xy+4)2=x2y2+16

  (4)(a2b—2)2=a2b2—2a2b+4

  2、利用乘法公式計(jì)算:

 。1)(3x+1)2

 。2)(a—3b)2

 。3)(—2x+)2

  (4)(—3m—4n)2

  3、利用乘法公式計(jì)算:

  9992

  4、先化簡(jiǎn),再求值;

  (m—3n)2—(m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2—kx+81是一個(gè)完全平方公式,則k的值是()

  2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是()

  3、已知(x+y)2=9,(x—y)2=5,求xy的值

  4、x+y=4,x—y=10,那么xy=()

  5、已知x— =4,則x2+ =()

  完全平方公式的教學(xué)設(shè)計(jì) 4

  教學(xué)目標(biāo)

  在具體情景中進(jìn)一步理解完全平方公式,能正確運(yùn)用完全平方公式和平方差公式進(jìn)行計(jì)算.

  重點(diǎn)、難點(diǎn)

  根據(jù)公式的特征及問(wèn)題的特征選擇適當(dāng)?shù)墓接?jì)算.

  教學(xué)過(guò)程

  一、議一議

  1.邊長(zhǎng)為(a+b)的正方形面積是多少?

  2.邊長(zhǎng)分別為a、b拍的兩個(gè)正方形面積和是多少?

  3.你能比較(1)(2)的結(jié)果嗎?說(shuō)明你的理由.師生共同討論:學(xué)生回答

  (1)(a+b)

  (2)a +b

  (3)因?yàn)?a+b) = a +2ab+b ,所以(a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的.正方形面積比(2)中的正方形面積大.

  二、做一做

  例1.利用完全平方式計(jì)算1. 102,2. 197

  師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計(jì)算盡可能簡(jiǎn)便.

  學(xué)生活動(dòng):在練習(xí)本上演示此題.讓學(xué)生敘述,

  教師板書(shū).解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2,=200 -2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809

  例2.計(jì)算:1.(x-3) -x 2.(2a+b- )(2a-b+ )

  師生共同分析:1中(x-3)可利用完全平方公式.

  學(xué)生動(dòng)筆解答第1題.教師根據(jù)學(xué)生解答情況,板書(shū)如下:解:1. (x-3) -x = x +6x+9-x =6x+9

  師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.

  學(xué)生活動(dòng):分小組討論第(2)題的解法.此題學(xué)生解答,難度較大.

  教師要引導(dǎo)學(xué)生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學(xué)生小組交流派代表進(jìn)行全班交流.

  最后教師板書(shū)解題過(guò)程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

  三、試一試計(jì)算:

  1.(a+b+c)

  2. (a+b)

  師生共同分析:

  對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c) =[a+(b+c)]

  對(duì)于(2)可化為(a+b) =(a+b)(a+b) .

  學(xué)生動(dòng)筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述,

  教師板書(shū).解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

  四、隨堂練習(xí)

  P38 1

  五、小結(jié)

  本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn).

  1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(a±b) = a ±b的錯(cuò)誤,或(a±b) = a ±ab+b (漏掉2倍)等錯(cuò)誤.

  2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.

  3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.

  六、作業(yè)

  課本習(xí)題1.14 P38 1、2、3.

  七、教后反思

  完全平方公式的教學(xué)設(shè)計(jì) 5

  一、學(xué)生起點(diǎn)分析

  學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生通過(guò)對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。

  學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過(guò)程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過(guò)程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力。

  二、教學(xué)任務(wù)分析

  教科書(shū)在學(xué)生已經(jīng)學(xué)習(xí)了整式的加法、乘法,以及平方差公式的基礎(chǔ)上,提出了本課的具體學(xué)習(xí)任務(wù):經(jīng)歷探索完全平方公式的過(guò)程,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。但這僅僅是這堂課外顯的具體教學(xué)目標(biāo),或者說(shuō)是一個(gè)近期目標(biāo)。整式是初中數(shù)學(xué)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中的一大主干,乘法公式則是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時(shí),乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,通過(guò)乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。為此,本節(jié)課的教學(xué)目標(biāo)是:

  1.經(jīng)歷探索完全平方公式的過(guò)程,并從完全平方公式的推導(dǎo)過(guò)程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。

  2.體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  3.了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。

  4.在學(xué)習(xí)中使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛(ài)數(shù)學(xué)的內(nèi)在美。

  三、教學(xué)設(shè)計(jì)分析

  本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):回顧與思考、情境引入、初識(shí)完全平方公式、再識(shí)完全平方公式、又識(shí)完全平方公式、課堂小結(jié)、布置作業(yè)。

  第一環(huán)節(jié)回顧與思考

  活動(dòng)內(nèi)容:復(fù)習(xí)已學(xué)過(guò)的平方差公式

  1.平方差公式:(a+b)(a-b)=a-b;公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。

  2.應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。

  活動(dòng)目的:本堂課的學(xué)習(xí)方向仍是引導(dǎo)鼓勵(lì)學(xué)生通過(guò)已學(xué)習(xí)的知識(shí)經(jīng)過(guò)個(gè)人思考、小1組合作等方式推導(dǎo)出本課新知,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力。而這個(gè)過(guò)程離不開(kāi)舊知識(shí)的鋪墊,平方差公式的學(xué)習(xí)有很多教學(xué)環(huán)節(jié)和形式與本節(jié)的學(xué)習(xí)是類(lèi)似的,其中包含的基本知識(shí)與基本能力也仍是本節(jié)的精神主旨,因而復(fù)習(xí)很有必要。

  實(shí)際教學(xué)效果:在復(fù)習(xí)過(guò)程中,學(xué)生能夠順利地回答出平方差公式的內(nèi)容,而對(duì)于其結(jié)構(gòu)特點(diǎn)及應(yīng)用時(shí)的注意事項(xiàng),通過(guò)學(xué)生之間的相互補(bǔ)充,絕大多數(shù)學(xué)生也得以掌握。在復(fù)習(xí)中既把舊知識(shí)得以復(fù)習(xí),同時(shí)學(xué)生也會(huì)主動(dòng)的去回顧平方差公式一節(jié)的學(xué)習(xí)過(guò)程,從而為本節(jié)課的`類(lèi)比學(xué)習(xí)奠定了基礎(chǔ)。

  第二環(huán)節(jié)情境引入

  活動(dòng)內(nèi)容:出示幻燈片,提出問(wèn)題。

  一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。

  用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。

  活動(dòng)目的:數(shù)學(xué)源自于生活,通過(guò)生活當(dāng)中的一個(gè)實(shí)際問(wèn)題,引入本節(jié)課的學(xué)習(xí)。從而在學(xué)生運(yùn)用舊知計(jì)算和比較實(shí)驗(yàn)田的面積當(dāng)中引出完全平方公式。由于實(shí)驗(yàn)田的總面積有多種表示方式,通過(guò)對(duì)比這些表示方式可以使學(xué)生對(duì)于公式有一個(gè)直觀的認(rèn)識(shí)。同時(shí)在古代人們也是通過(guò)類(lèi)似的圖形認(rèn)識(shí)了這個(gè)公式。在列代數(shù)式解決問(wèn)題的過(guò)程當(dāng)中,通過(guò)自主探究和交流學(xué)到了新的知識(shí),學(xué)生的學(xué)習(xí)積極性和主動(dòng)性得到大大的激發(fā)。

  實(shí)際教學(xué)效果:?jiǎn)栴}提出后,學(xué)生能夠主動(dòng)地去尋找解決問(wèn)題的方法。同時(shí)問(wèn)題要求用不同的形式來(lái)表示總面積,這就要求學(xué)生從不同的角度來(lái)進(jìn)行考慮,從而對(duì)于學(xué)生的思維提出了挑戰(zhàn)。不過(guò)由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識(shí)。從而在學(xué)生的自主探索過(guò)程中引出了完全平方公式,使學(xué)生有了一個(gè)直觀認(rèn)識(shí)。在整個(gè)過(guò)程中老師只是在提出問(wèn)題和引導(dǎo)學(xué)生解決問(wèn)題,學(xué)生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

  第三環(huán)節(jié)初識(shí)完全平方公式

  活動(dòng)內(nèi)容:1.通過(guò)多項(xiàng)式的乘法法則來(lái)驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導(dǎo)學(xué)生利用幾何圖形來(lái)驗(yàn)證兩數(shù)差的完全平方公式。

  3.分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語(yǔ)言來(lái)描述完全平方公式。

  結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;

  右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

  語(yǔ)言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

  活動(dòng)目的:第一個(gè)活動(dòng)是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運(yùn)算的角度運(yùn)用多項(xiàng)式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進(jìn)一步推導(dǎo)出兩數(shù)差的完全平方公式。在教學(xué)中學(xué)生有條理的思考和語(yǔ)言表達(dá)能力得以培養(yǎng)。

  第二個(gè)活動(dòng)使學(xué)生再次從幾何的角度來(lái)驗(yàn)證兩數(shù)差的完全平方公式。從而學(xué)生經(jīng)歷了幾何解釋到代數(shù)運(yùn)算,再到幾何解釋的過(guò)程,學(xué)生的數(shù)形結(jié)合意識(shí)得以培養(yǎng),并且從不同的角度推導(dǎo)出了公式,并且加以鞏固。

  第三個(gè)活動(dòng)在前面的基礎(chǔ)上,加以總結(jié),使得學(xué)生從形式上初步地認(rèn)識(shí)了完全平方公式。實(shí)際教學(xué)效果:此環(huán)節(jié)的設(shè)計(jì)符合學(xué)生的認(rèn)知水平和認(rèn)知過(guò)程。在第一個(gè)活動(dòng)的教學(xué)中2應(yīng)重視學(xué)生對(duì)于算理的理解,讓學(xué)生嘗試說(shuō)出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)他們有條理的思考和語(yǔ)言表達(dá)能力。在第二個(gè)活動(dòng)中既是對(duì)于第二環(huán)節(jié)用幾何解釋驗(yàn)證兩數(shù)和的完全平方公式的鞏固,同時(shí)也是對(duì)于學(xué)生數(shù)形結(jié)合意識(shí)的一種培養(yǎng),絕大多數(shù)學(xué)生能夠通過(guò)交流合作得以掌握。通過(guò)幾個(gè)活動(dòng)學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過(guò)程中培養(yǎng)了數(shù)學(xué)的基本能力。

  第四環(huán)節(jié)再識(shí)完全平方公式

  活動(dòng)內(nèi)容:例1用完全平方公式計(jì)算:

  (1)(2x3)2;

  (2)(4x+5y)2;

  (3)(mna)22.總結(jié)口訣:首平方,尾平方,兩倍乘積放中央。

  3.鞏固練習(xí)。

 。1)計(jì)算:

  11(2y)

  2;(2xyx)2

 ;(n+1)2-n2

 ;(4x+0.5)2

  ;(2x2-3y2)225(2)糾錯(cuò)練習(xí):指出下列各式中的錯(cuò)誤,并加以改正:

  (1)(2a1)2=2a22a+1;

  (2)(2a+1)2=4a2+1;

  (3)(a1)2=a22a1.活動(dòng)目的:應(yīng)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。同時(shí)例1三個(gè)題目的設(shè)計(jì)上有一定的梯度,從而總結(jié)出進(jìn)行簡(jiǎn)單計(jì)算的一般口訣,并加以鞏固落實(shí)。

  實(shí)際教學(xué)效果:對(duì)照公式,進(jìn)行獨(dú)立的簡(jiǎn)單計(jì)算,體會(huì)公式在解題中的應(yīng)用,進(jìn)一步熟悉公式。并通過(guò)小組交流,自我檢驗(yàn),鞏固反饋。考察個(gè)人的實(shí)際運(yùn)用能力,并及時(shí)查漏補(bǔ)缺。在此基礎(chǔ)上由教師總結(jié)出口訣,幫助學(xué)生進(jìn)一步認(rèn)識(shí)完全平方公式,并加以鞏固練習(xí)。

  第五環(huán)節(jié)又識(shí)完全平方公式

  活動(dòng)內(nèi)容:1.例2利用完全平方公式計(jì)算:

  22(1)(-1-2x);(2)(-2x+1)

  2.進(jìn)一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減;顒(dòng)目的:例2是對(duì)課本內(nèi)容的補(bǔ)充,從而使得學(xué)生從更深的一個(gè)角度來(lái)認(rèn)識(shí)完全平方公式,防止解題時(shí)中間項(xiàng)的符號(hào)出現(xiàn)問(wèn)題,并能在解題中通過(guò)靈活的變形來(lái)運(yùn)用公式,解決問(wèn)題。并對(duì)上面總結(jié)的口訣進(jìn)行進(jìn)一步的完善。

  實(shí)際教學(xué)效果:首先放手讓學(xué)生獨(dú)立來(lái)解決第一個(gè)題目,學(xué)生出錯(cuò)較多,且都集中在中間項(xiàng)的符號(hào)上,由此引出有進(jìn)一步認(rèn)識(shí)公式的必要,從而教師引導(dǎo)學(xué)生再次觀察題目,仔細(xì)分析題目當(dāng)中誰(shuí)相當(dāng)于公式當(dāng)中的a與b,從而運(yùn)用不同的方法和思路,解決問(wèn)題。在活動(dòng)中學(xué)生認(rèn)識(shí)到了解決問(wèn)題之前恰當(dāng)選擇公式和正確分析題目的必要性,學(xué)習(xí)的積極性再次被激發(fā),在此基礎(chǔ)上教師把上面總結(jié)的口訣再次完善,幫助學(xué)生突破難點(diǎn),教師的主導(dǎo)作用得以體現(xiàn)。

  第六環(huán)節(jié)課堂小結(jié)

  活動(dòng)內(nèi)容:1.完全平方公式和平方差公式不同:

  形式不同.

  222結(jié)果不同:完全平方公式的結(jié)果是三項(xiàng),即(ab)=a2ab+b;22平方差公式的結(jié)果是兩項(xiàng),即(a+b)(ab)=ab.2.解題過(guò)程中要準(zhǔn)確確定a和b,對(duì)照公式原形的兩邊,做到不丟項(xiàng)、

  3不弄錯(cuò)符號(hào)、2ab時(shí)不少乘2。

  3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

  活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對(duì)于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對(duì)所學(xué)知識(shí)鞏固的目的。

  實(shí)際教學(xué)效果:學(xué)生暢所欲言自己的實(shí)際收獲,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

  第七環(huán)節(jié)布置作業(yè)

  1.基礎(chǔ)訓(xùn)練:教材習(xí)題1.13。

  222.拓展練習(xí):(a+b)與(a-b)有怎樣的聯(lián)系?能否用一個(gè)等式來(lái)表示兩者之間的關(guān)系,并嘗試用圖形來(lái)驗(yàn)證你的結(jié)論?

  四、教學(xué)設(shè)計(jì)反思

  1.本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(zhǎng),為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對(duì)學(xué)生能力的培養(yǎng),又是對(duì)公式的識(shí)記過(guò)程,而且還可以提高他們的應(yīng)用公式的本領(lǐng)。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè)此不疲,更加充分的參與其中。對(duì)于這一點(diǎn),教師一定要轉(zhuǎn)變觀念。

  2.在完全平方公式的探求過(guò)程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力。教師要善于抓住這個(gè)契機(jī),適當(dāng)對(duì)學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀察品質(zhì)。

  3.對(duì)于公式使用的條件既要把握好“度”,又要把握好“方向”。對(duì)于公式中的字母取值范圍,不必過(guò)分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對(duì)于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類(lèi)似公式的混淆,給正確解題設(shè)置了障礙。

  4.教無(wú)定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃。如,對(duì)于較好的班級(jí),則可以?xún)?yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對(duì)比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類(lèi)比的學(xué)習(xí)方式;而對(duì)于基礎(chǔ)較薄弱的班級(jí),則應(yīng)以提高學(xué)習(xí)興趣、教會(huì)學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬(wàn)不可拔苗助長(zhǎng),以防物極必反。

  完全平方公式的教學(xué)設(shè)計(jì) 6

  教學(xué)目標(biāo)

  理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。

  在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。

  培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。

  重點(diǎn)難點(diǎn)

  重點(diǎn)

  完全平方公式的比較和運(yùn)用

  難點(diǎn)

  完全平方公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。

  教學(xué)過(guò)程

  一、復(fù)習(xí)導(dǎo)入

  1. 說(shuō)出完全平方公式的內(nèi)容及作用。

  2. 計(jì)算 ,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

  學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“ ”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。

  教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的',區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。

  我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。

  二、新課講解

  溫故知新

  與 , 與 相等嗎?為什么?

  學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:

  1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;

  2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。

  思考:與 , 與 相等嗎?為什么?

  利用整體的方法判斷,把 看成一個(gè)數(shù),則 是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

  總結(jié)歸納得到: ;

  三、典例剖析

  例1運(yùn)用完全平方公式計(jì)算:

 。1) ; (2)

  鼓勵(lì)學(xué)生用多種方法計(jì)算,只要言之成理,只要是自己動(dòng)腦筋發(fā)現(xiàn)的,都要給予肯定,同時(shí)還要引導(dǎo)學(xué)生評(píng)價(jià)哪種算法最簡(jiǎn)潔。

  例2計(jì)算:

 。1) ; (2) .

  例3 計(jì)算:

 。1) ; (2)

  訓(xùn)練學(xué)生熟練地、靈活地運(yùn)用完全平方公式進(jìn)行運(yùn)算,進(jìn)一步滲透整體和轉(zhuǎn)化的思想方法。

  四、課堂練習(xí)

  1.運(yùn)用完全平方公式計(jì)算:

 。1) ; (2) ;

 。3) ; (4)

  2.計(jì)算:

 。1) ;(2) .

  3. 計(jì)算:

 。1) ; (2)

  學(xué)生解答,教師巡視,注意學(xué)生的計(jì)算過(guò)程是否合理,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析和點(diǎn)評(píng)。

  五、小結(jié)

  師生共同回顧完全平方公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。

  六、布置作業(yè)

  P50第2(3)、(4),3題

  完全平方公式的教學(xué)設(shè)計(jì) 7

  教學(xué)目標(biāo)

  經(jīng)歷探索完全平方公式的過(guò)程,會(huì)推導(dǎo)完全平方公式;

  能利用完全平方公式進(jìn)行簡(jiǎn)單的運(yùn)算。

  在探索完全平方公式的過(guò)程中,發(fā)展學(xué)生的符號(hào)感和推理能力,體會(huì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)與簡(jiǎn)潔。

  培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。

  重點(diǎn)難點(diǎn)

  重點(diǎn)

  完全平方公式的推導(dǎo)和運(yùn)用

  難點(diǎn)

  完全平方公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。

  教學(xué)過(guò)程

  一、復(fù)習(xí)導(dǎo)入

  1.說(shuō)出平方差公式的內(nèi)容及作用。

  2.我們知道,當(dāng)相乘的兩個(gè)多項(xiàng)式有一項(xiàng)相同,另一項(xiàng)相反時(shí),可以用平方差公式直接得到結(jié)果,大大簡(jiǎn)化了運(yùn)算過(guò)程,那么當(dāng)相乘的兩個(gè)多項(xiàng)式兩項(xiàng)都相同時(shí),是不是也有一個(gè)公式來(lái)簡(jiǎn)化運(yùn)算過(guò)程呢?這節(jié)課我們就來(lái)探索一個(gè)新的乘法公式:完全平方公式。

  二、新課講解

  探究新知

  計(jì)算下列各式,你能發(fā)現(xiàn)它們的結(jié)果有什么規(guī)律嗎?

  鼓勵(lì)學(xué)生發(fā)表各自的看法,只要言之成理,只要是自己動(dòng)腦筋發(fā)現(xiàn)的`,都要給予肯定,以此調(diào)動(dòng)學(xué)生參與的熱情。

  綜合學(xué)生的觀察,得到:兩數(shù)和的平方,等于它們的平方和,加上它們的積的兩倍。

  2.這個(gè)結(jié)論可以推廣到任意兩個(gè)數(shù)的計(jì)算上去嗎?

  我們可以利用多項(xiàng)式乘法法則來(lái)推導(dǎo)一下:(師生共同完成)

  3.兩數(shù)差的平方等于什么呢?請(qǐng)同學(xué)們計(jì)算。

  學(xué)生一般會(huì)這樣計(jì)算:

  及時(shí)引導(dǎo)學(xué)生用語(yǔ)言敘述這個(gè)結(jié)果:

  兩數(shù)差的平方,等于它們的平方和,減去它們的積的兩倍。

  以上兩個(gè)公式都叫做完全平方公式,它們之間有聯(lián)系嗎?啟發(fā)學(xué)生把“-b”整個(gè)的看成一個(gè)數(shù),用兩數(shù)和的平方公式來(lái)計(jì)算,結(jié)果怎么樣?結(jié)果發(fā)現(xiàn)兩數(shù)差的平方可以用兩數(shù)和的平方公式推導(dǎo)出來(lái),也就是兩數(shù)差的平方公式可以歸屬于兩數(shù)和的平方公式。但為了使用方便,通常我們還是以?xún)蓚(gè)公式來(lái)呈現(xiàn)。

  完全平方公式:;

  用語(yǔ)言敘述為:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的兩倍。

  完全平方公式的理解

  1.比較兩數(shù)和、兩數(shù)差的平方公式的異同。

  學(xué)生討論,發(fā)表各自的看法。

  2.比較完全平方公式與平方差公式的不同之處。

  學(xué)生發(fā)表看法后,教師特別指出完全平方公式計(jì)算的結(jié)果有三項(xiàng),不要誤以為是兩項(xiàng),比方;,是錯(cuò)誤的。我們用圖形的面積來(lái)加深一下對(duì)這個(gè)結(jié)果的理解:如圖,顯然整個(gè)正方形的面積由四部分組成。

  三、典例剖析

  例1運(yùn)用完全平方公式計(jì)算:

 。3);(4);

  師生共同解答,教師板書(shū)。初學(xué)運(yùn)用時(shí)要寫(xiě)清楚運(yùn)用公式的步驟,熟記公式。

  例2運(yùn)用完全平方公式計(jì)算:

  學(xué)生解答,進(jìn)一步體會(huì)兩個(gè)完全平方公式的異同。

  四、課堂練習(xí)

  1.下面各式的計(jì)算對(duì)不對(duì)?如果不對(duì),應(yīng)怎樣改正?

  2.運(yùn)用完全平方公式計(jì)算:

 。1);(2);(3);

  3.運(yùn)用完全平方公式計(jì)算:

  教師要注意發(fā)現(xiàn)學(xué)生的錯(cuò)誤,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析,對(duì)于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯(cuò)誤的原因。

  五、小結(jié)

  師生共同回顧完全平方公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。

  六、布置作業(yè)

  P50第2(1)、(2),4題

  完全平方公式的教學(xué)設(shè)計(jì) 8

  一、教學(xué)目標(biāo):

  經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力;在變式中,拓展提高;通過(guò)積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習(xí)的習(xí)慣;重點(diǎn)是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運(yùn)用;難點(diǎn)是完全平方公式的運(yùn)用。

  二、教學(xué)過(guò)程:

  1.檢查學(xué)生的“預(yù)習(xí)知識(shí)樹(shù)”,導(dǎo)入課題:

  師:前面學(xué)習(xí)了平方差公式,同學(xué)們對(duì)平方差公式的結(jié)構(gòu)特點(diǎn)、運(yùn)用以及學(xué)習(xí)公式的意義有了初步的認(rèn)識(shí)。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”――完全平方公式。請(qǐng)拿出你的“預(yù)習(xí)知識(shí)樹(shù)”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問(wèn)的同學(xué)請(qǐng)?jiān)儐?wèn)。

  (活動(dòng):老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問(wèn)題)生:(互查、討論“預(yù)習(xí)知識(shí)樹(shù)”,有問(wèn)題的詢(xún)問(wèn)問(wèn)題。)師:(老師點(diǎn)評(píng)學(xué)生預(yù)習(xí)情況,并出示老師做的“知識(shí)樹(shù)”,引出課題:完全平方公式。)說(shuō)明:把預(yù)習(xí)提到課前,利用“知識(shí)樹(shù)”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨(dú)立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會(huì)更充分,聽(tīng)講時(shí)就能有準(zhǔn)備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識(shí)樹(shù)”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點(diǎn)撥,在課堂上留出更多的時(shí)間大量拓展、提高,發(fā)展學(xué)生的能力。

  2.自學(xué)檢測(cè),制造通用工具:師:下面進(jìn)行自學(xué)檢測(cè).計(jì)算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動(dòng):投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯(cuò)了,由學(xué)生糾正,老師再點(diǎn)評(píng)。)師:觀察練習(xí),公式中的a、b可代表什么?

  生:可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式。

  說(shuō)明:點(diǎn)評(píng)時(shí),老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)平方差公式時(shí),學(xué)生應(yīng)該認(rèn)識(shí)到這個(gè)道理,在這里再次強(qiáng)化。

  師:說(shuō)得非常好,明確“公式中的a、b可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式”的變化規(guī)律,就能正確運(yùn)用公式解題了。顯然,剛做的練習(xí)題是由公式變化來(lái)的,若是變下去,能變多少道題?

  生:無(wú)數(shù)道。師:最終是幾道題?生:一道。說(shuō)明:這就是老師的“暗線”語(yǔ)言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無(wú)數(shù)道題,是“解壓”的過(guò)程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過(guò)程,把握了變化規(guī)律才能更好地解題。

  師:你會(huì)變了嗎?請(qǐng)各小組編題。(活動(dòng):四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個(gè)小組出示題目,其他小組同學(xué)練習(xí)。)說(shuō)明:引導(dǎo)學(xué)生現(xiàn)場(chǎng)出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗(yàn)證變化規(guī)律。

  師:下面思考,如何計(jì)算:(a+b+c)2生1:可根據(jù)多項(xiàng)式乘以多項(xiàng)式來(lái)計(jì)算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯(cuò)。還有其他方法嗎?生2:也可以把其中的(a+b)兩項(xiàng)看成一項(xiàng),變成[(a+b)+c]2的形式,就能直接運(yùn)用完全平方公式了。

  師:說(shuō)得非常好。兩種方法都可以,但哪種更簡(jiǎn)單呢?請(qǐng)你任選一種,完成練習(xí)。

  生:(緊張地做題,同時(shí)找兩個(gè)學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會(huì)做嗎?

  生:(齊答)會(huì)。師:怎么辦?生1:把其中(a+b)看做一項(xiàng),(c+d)看做一項(xiàng),還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項(xiàng),(b+d)看做一項(xiàng),也能直接運(yùn)用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無(wú)數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個(gè)學(xué)生都會(huì)解這樣的題了。課下,請(qǐng)同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計(jì)算出來(lái)嗎?

  (活動(dòng):投影顯示一組題目,如(a+b)3、(a+b)4……)說(shuō)明:這就是老師進(jìn)一步利用這個(gè)例子論證“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的.變化規(guī)律。

  3.通過(guò)大量的習(xí)題驗(yàn)證通用工具,學(xué)生并且自造通用工具。

  師:通過(guò)前面的檢測(cè),看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進(jìn)入達(dá)標(biāo)檢測(cè)。

  (活動(dòng):投影顯示達(dá)標(biāo)檢測(cè)題)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計(jì)算:

 、(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計(jì)算:(x+2y+3)(x+2y-3)生:(積極、主動(dòng)地在作業(yè)本上完成上面練習(xí)題。)師:(巡視,批閱完成快的學(xué)生的作業(yè),最后集體點(diǎn)評(píng),只講不會(huì)的。)說(shuō)明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開(kāi),也可直接理解成-2m與n的差,按(a-b)2計(jì)算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運(yùn)用公式計(jì)算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時(shí)訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過(guò)變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進(jìn)一步驗(yàn)證了“通用工具”,即“解決某一類(lèi)問(wèn)題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達(dá)到腦算的層次,水到渠成,能力自然提高,學(xué)生就會(huì)自造“通用工具”了。

  4.嫁接“知識(shí)樹(shù)”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問(wèn)題嗎?

  (活動(dòng):再次投影本節(jié)課“知識(shí)樹(shù)”。)生:這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項(xiàng)式也可以是多項(xiàng)式,能運(yùn)用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計(jì)算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計(jì)算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習(xí)指導(dǎo):①課本第38-39頁(yè)內(nèi)容,重點(diǎn)研究例3兩個(gè)題目的解題方法,能?chē)L試獨(dú)自解答課后隨堂練習(xí)或習(xí)題,②設(shè)計(jì)下節(jié)課“知識(shí)樹(shù)”,優(yōu)化本單元“知識(shí)樹(shù)”。說(shuō)明:本環(huán)節(jié)是將本節(jié)課“知識(shí)樹(shù)”

  移植到乘法公式的單元“知識(shí)樹(shù)”上,整體構(gòu)建知識(shí),同時(shí)更加強(qiáng)化了學(xué)生的“能力樹(shù)”。作業(yè)是推薦性的作業(yè),達(dá)標(biāo)檢測(cè)就是“堂堂清”,學(xué)生課下只須做好預(yù)習(xí)作業(yè)就行了,這樣會(huì)有更多自由安排的時(shí)間,發(fā)展個(gè)性。

  完全平方公式的教學(xué)設(shè)計(jì) 9

  教學(xué)目標(biāo)

  1、知識(shí)與技能:體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算.

  2、過(guò)程與方法:通過(guò)讓學(xué)生經(jīng)歷探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.

  3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿(mǎn)著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹(shù)立學(xué)習(xí)自信心.

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):

  1、對(duì)公式的理解,包括它的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、語(yǔ)言表述(學(xué)生自己的語(yǔ)言)、幾何解釋.

  2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.

  教學(xué)難點(diǎn):

  1、完全平方公式的推導(dǎo)及其幾何解釋.

  2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用.

  教學(xué)工具

  課件

  教學(xué)過(guò)程

  一、復(fù)習(xí)舊知、引入新知

  問(wèn)題1:請(qǐng)說(shuō)出平方差公式,說(shuō)說(shuō)它的結(jié)構(gòu)特點(diǎn).

  問(wèn)題2:平方差公式是如何推導(dǎo)出來(lái)的?

  問(wèn)題3:平方差公式可用來(lái)解決什么問(wèn)題,舉例說(shuō)明.

  問(wèn)題4:想一想、做一做,說(shuō)出下列各式的結(jié)果.

  (1)(a+b)2(2)(a-b)2

  (此時(shí),教師可讓學(xué)生分別說(shuō)說(shuō)理由,并且不直接給出正確評(píng)價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)

  二、創(chuàng)設(shè)問(wèn)題情境、探究新知

  一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)

  (1)四塊面積分別為:、、、;

  (2)兩種形式表示實(shí)驗(yàn)田的總面積:

 、僬w看:邊長(zhǎng)為的大正方形,S=;

 、诓糠挚矗核膲K面積的和,S=.

  總結(jié):通過(guò)以上探索你發(fā)現(xiàn)了什么?

  問(wèn)題1:通過(guò)以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問(wèn)題4正確的結(jié)果是什么了吧?

  問(wèn)題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們?cè)倏聪旅娴膯?wèn)題,繼續(xù)探索.(a+b)2表示的意義是什么?請(qǐng)你用多項(xiàng)式的乘法法則加以驗(yàn)證.

  (教學(xué)過(guò)程中教師要有意識(shí)地提到猜想、感覺(jué)得到的不一定正確,只有再通過(guò)驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見(jiàn)解,但要驗(yàn)證)

  問(wèn)題3:你能說(shuō)說(shuō)(a+b)2=a2+2ab+b2

  這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語(yǔ)言敘述.

  (結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

  問(wèn)題4:你能根據(jù)以上等式的'結(jié)構(gòu)特點(diǎn)說(shuō)出(a-b)2等于什么嗎?請(qǐng)你再用多項(xiàng)式的乘法法則加以驗(yàn)證.

  總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱(chēng)為完全平方公式.

  問(wèn)題:①這兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語(yǔ)言敘述這兩個(gè)公式嗎?

  語(yǔ)言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.

  強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來(lái)差是減.

  三、例題講解,鞏固新知

  例1:利用完全平方公式計(jì)算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟

  (1)確定首、尾,分別平方;

  (2)確定中間系數(shù)與符號(hào),得到結(jié)果.

  四、練習(xí)鞏固

  練習(xí)1:利用完全平方公式計(jì)算

  練習(xí)2:利用完全平方公式計(jì)算

  練習(xí)3:

  (練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評(píng)價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對(duì)公式完全掌握,如有學(xué)生出現(xiàn)問(wèn)題,學(xué)生、教師應(yīng)及時(shí)幫助.)

  五、變式練習(xí)

  六、暢談收獲,歸納總結(jié)

  1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.

  2、我們?cè)谶\(yùn)用公式時(shí),要注意以下幾點(diǎn):

  (1)公式中的字母a、b可以是任意代數(shù)式;

  (2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫(xiě)錯(cuò)符號(hào);

  (3)可能出現(xiàn)①②這樣的錯(cuò)誤.也不要與平方差公式混在一起.

  七、作業(yè)設(shè)置

  完全平方公式的教學(xué)設(shè)計(jì) 10

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  能夠運(yùn)用完全平方公式對(duì)簡(jiǎn)單的多項(xiàng)式進(jìn)行因式分解

  【過(guò)程與方法】

  通過(guò)對(duì)實(shí)例的探究與合作,鍛煉公式推導(dǎo)與總結(jié)能力

  【情感態(tài)度與價(jià)值觀】

  在合作探究中,體會(huì)到數(shù)學(xué)學(xué)習(xí)的樂(lè)趣,加強(qiáng)交流合作能力

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  完全平方公式

  【教學(xué)難點(diǎn)】

  完全平方公式的推導(dǎo)過(guò)程與應(yīng)用

  三、教學(xué)過(guò)程

  (1)情景設(shè)置,設(shè)疑導(dǎo)入

  老師展示正方形廣場(chǎng)圖片,并告知已知條件:邊長(zhǎng)為a的正方形廣場(chǎng)兩個(gè)鄰邊有5米寬的道路,形成一個(gè)較大的`正方形廣場(chǎng),嘗試用不同方法求解整個(gè)廣場(chǎng)(包括道路)的大小。

  預(yù)設(shè):①(a+5)(看作一個(gè)整體)

 、赼+5+2×5×a(看作幾個(gè)部分)

  (2)師生合作,新課教學(xué)

  由學(xué)生板書(shū)得出等式:(a+5)=a+5+2×5×a,提出問(wèn)題:如果將5米寬,換成b米寬又能得到什么呢?(小組交流討論)

  得出結(jié)論:

  進(jìn)行證明:

  得到完全平方公式,記憶口訣:首平方,尾平方,首尾兩倍放中央。

  (3)鞏固提升,深化新知

  (4)小結(jié)作業(yè),及時(shí)反思

  小結(jié):請(qǐng)同學(xué)們談一談今天這節(jié)課的收獲:

  1.學(xué)會(huì)了完全平方公式

  2.學(xué)會(huì)了簡(jiǎn)易計(jì)算平方式的能力

  3.提高了與同學(xué)們合作探究的能力,體會(huì)到了合作的樂(lè)趣

  作業(yè):

  公式拓展:a+b=(a+b)+()

  91=()

  及時(shí)復(fù)習(xí)鞏固完全平方公式,并在生活中找一找完全平方公式的運(yùn)用

  完全平方公式的教學(xué)設(shè)計(jì) 11

  一、教學(xué)目標(biāo)

 。1)知識(shí)與技能;學(xué)生通過(guò)推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計(jì)算。

 。2)過(guò)程與方法目標(biāo);學(xué)生探究完全平方公式,體會(huì)數(shù)形結(jié)合。

  二、教學(xué)重點(diǎn):

  公式結(jié)構(gòu)及運(yùn)用。

  三、教學(xué)難點(diǎn):

  公式中字母AB的含義理解與公式正確運(yùn)用。

  四、教具:

  自制長(zhǎng)方形、正方形卡片

  五、教學(xué)過(guò)程:

  活動(dòng)

  學(xué)生活動(dòng)

  1、創(chuàng)設(shè)情景,提出問(wèn)題,引入課題

 。1)想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時(shí),老人都拿出糖招待他們,來(lái)了幾個(gè)孩子老人就會(huì)每個(gè)孩子幾塊糖。

 。1)第一天,a個(gè)男孩去看老人,老人共給他們幾塊糖?

 。2)第二天,個(gè)女孩子去看望老人,老人共給他們多少塊糖?

 。3)第三天,()個(gè)孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的'孩子得到糖總數(shù)哪個(gè)多?多多少?為什么?(分組討論)

  學(xué)生四人一組討論。

  填空:

 。1)第一天給孩子塊糖。

 。2)第二天給孩子塊糖。

 。3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  活動(dòng)

  學(xué)生活動(dòng)

 。2)做一做、請(qǐng)同學(xué)拼圖

  教師巡視指導(dǎo)學(xué)生拼圖

  1、教師提問(wèn):

 。1)大正方形邊長(zhǎng)?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  2、想一想

 。1)(a+b)用多項(xiàng)式乘法法則說(shuō)明

  (2)(a—b)

  3、請(qǐng)同學(xué)們自己敘述上面的等式

  4、說(shuō)一說(shuō),ab能表示什么?

 。ā+○)□+2□○+○

  5、算一算

 。1)(2X—3)(2)(4X+5Y)

  請(qǐng)同學(xué)們分清ab

  6、練一練

  (1)(2X—3Y)(2)(2XY—3X)

  7、試一試(a+b+c)

  作業(yè):P1351、2

  學(xué)生2人一組拼圖交流

  2、學(xué)生觀察思考

 。1)大正方形邊長(zhǎng)?

 。2)四塊卡片的。面積分別是

 。3)大正方形的總面積是多少?

  3、(1)學(xué)生運(yùn)用多項(xiàng)式乘法法則推導(dǎo)

 。╝+b)=a+2ab+b說(shuō)出每一步運(yùn)算理由

 。2)學(xué)生自己探究交流

  4、學(xué)生用語(yǔ)言敘述公式

  5、師生共同a、b對(duì)應(yīng)項(xiàng)教師書(shū)寫(xiě)

  6、學(xué)生獨(dú)立完成練一練展示結(jié)果

  7、學(xué)生四人一組討論交流

  8、有興趣的同學(xué)可以探

  完全平方公式的教學(xué)設(shè)計(jì) 12

  教學(xué)目標(biāo)

  1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的`形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。

  2、掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)

  教學(xué)方法:

  對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動(dòng):

  學(xué)生活動(dòng)

  復(fù)習(xí)鞏固:

  上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請(qǐng)同學(xué)們先閱讀課本87—88頁(yè),看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強(qiáng)調(diào)注意符號(hào))

  首先我們來(lái)試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

  練習(xí):第88頁(yè)練一練第1、2題

  完全平方公式的教學(xué)設(shè)計(jì) 13

  一、學(xué)習(xí)目標(biāo)

  1.會(huì)運(yùn)用完全平方公式進(jìn)行一些數(shù)的簡(jiǎn)便運(yùn)算

  二、學(xué)習(xí)重點(diǎn)

  運(yùn)用完全平方公式進(jìn)行一些數(shù)的簡(jiǎn)便運(yùn)算

  三、學(xué)習(xí)難點(diǎn)

  靈活運(yùn)用平方差和完全平方公式進(jìn)行整式的簡(jiǎn)便運(yùn)算

  四、學(xué)習(xí)設(shè)計(jì)

  (一)預(yù)習(xí)準(zhǔn)備

  (1)預(yù)習(xí)書(shū)p26-27

  (2)思考:如何更簡(jiǎn)單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[

  (3)預(yù)習(xí)作業(yè):1.利用完全平方公式計(jì)算

  (1)(2) (3)(4)

  2.計(jì)算:

  (1) (2)

  (二)學(xué)習(xí)過(guò)程

  平方差公式和完全平方公式的逆運(yùn)用

  由 反之

  反之

  1、填空:

  (1)(2)(3)

  (4)(5)

  (6)

  (7)若,則k=

  (8)若是完全平方式,則k=

  例1計(jì)算:1. 2.

  現(xiàn)在我們從幾何角度去解釋完全平方公式:

  從圖(1)中可以看出大正方形的邊長(zhǎng)是a+b,

  它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以

  大正方形的面積等于這四個(gè)圖形的面積之和.

  則S= =

  即:

  如圖(2)中,大正方形的邊長(zhǎng)是a,它的面積是 ;矩形DCGE與矩形BCHF是全等圖形,長(zhǎng)都是 ,寬都是 ,所以它們的面積都是 ;正方形HCGM的邊長(zhǎng)是b,其面積就是 ;正方形AFME的邊長(zhǎng)是 ,所以它的面積是 .從圖中可以看出正方形AEMF的面積等于正方形ABCD的面積減去兩個(gè)矩形DCGE和BCHF的面積再加上正方形HCGM的面積.也就是:(a-b)2= .這也正好符合完全平方公式.

  例2.計(jì)算:

  (1) (2)

  變式訓(xùn)練:

  (1) (2)

  (3) (4)(x+5)2–(x-2)(x-3)

  (5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

  拓展:1、(1)已知,則=

  (2)已知,求________,________

  (3)不論為任意有理數(shù),的值總是()

  A.負(fù)數(shù)B.零C.正數(shù)D.不小于2

  2、(1)已知,求和的值。

  (2)已知,求的'值。

  (3).已知,求的值

  回顧小結(jié)

  1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。

  2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。

【完全平方公式的教學(xué)設(shè)計(jì)】相關(guān)文章:

完全平方公式教學(xué)反思03-23

《完全平方公式》教學(xué)反思04-22

數(shù)學(xué)《完全平方公式》教案10-19

《完全平方和差公式》教學(xué)反思01-14

數(shù)學(xué)教案:完全平方公式02-17

數(shù)學(xué)教案完全平方公式12-30

數(shù)學(xué)教案:完全平方公式4篇02-17

數(shù)學(xué)《完全平方公式》教案[優(yōu)秀15篇]10-19

數(shù)學(xué)《完全平方公式》教案錦集(15篇)10-19

平方差公式教學(xué)反思03-23