天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網>教案大全>數學教案>七年級數學教案>有理數的混合運算 —— 初中數學第一冊教案

有理數的混合運算 —— 初中數學第一冊教案

時間:2022-08-16 22:25:04 七年級數學教案 我要投稿
  • 相關推薦

有理數的混合運算 —— 初中數學第一冊教案


有理數的混合運算 —— 初中數學第一冊教案

有理數的混合運算(二)

 

教學目標

1.進一步熟練掌握有理數的混合運算,并會用運算律簡化運算;

2.培養(yǎng)學生的運算能力及綜合運用知識解決問題的能力.

教學重點和難點

重點:有理數的運算順序和運算律的運用.

難點:靈活運用運算律及符號的確定.

課堂教學過程設計

一、從學生原有認知結構提出問題

1.敘述有理數的運算順序.

2.三分鐘小測試

計算下列各題(只要求直接寫出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、講授新課

例1  當a=-3,b=-5,c=4時,求下列代數式的值:

(1)(a+b)2;  (2)a2-b2+c2

(3)(-a+b-c)2;  (4) a2+2ab+b2

解:(1)  (a+b)2

=(-3-5)2  (省略加號,是代數和)

=(-8)2=64;  (注意符號)

(2)  a2-b2+c2

=(-3)2-(-5)2+4(讓學生讀一讀)

=9-25+16  (注意-(-5)2的符號)

=0;

(3)  (-a+b-c)2

=[-(-3)+(-5)-4](注意符號)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此題是有理數的混合運算,有小括號可以先做小括號內的,

=1.02+6.25-12=-4.73.

在有理數混合運算中,先算乘方,再算乘除.乘除運算在一起時,統(tǒng)一化成乘法往往可以約分而使運算簡化;遇到帶分數通分時,可以寫

例4  已知a,b互為相反數,c,d互為倒數,x的絕對值等于2,試求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.

:由題意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

當x=2時,原式=x2-x-1=4-2-1=1;

當x=-2時,原式=x2-x-1=4-(-2)-1=5.

三、課堂練習

1.當a=-6,b=-4,c=10時,求下列代數式的值:

2.判斷下列各式是否成立(其中a是有理數,a≠0):

(1)a2+1>0;  (2)1-a2<0;

 

四、作業(yè)

1.根據下列條件分別求a3-b3與(a-b)·(a2+ab+b2)的值:

2.當a=-5.4,b=6,c=48,d=-1.2時,求下列代數式的值:

3.計算:

4.按要求列出算式,并求出結果.

(2)-64的絕對值的相反數與-2的平方的差.

5*.如果|ab-2|+(b-1)2=0,試求

課堂教學設計說明

1.課前三分鐘小測試中的題目,運算步驟不太多,著重考查學生運算法則、運算順序和運算符號,三分鐘內正確做完15題可算達標,否則在課后宜補充這一類訓練.

2.學生完成鞏固練習第1題以后,教師可引導學生發(fā)現(xiàn)(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使學生做題目的過程變成獲取新知識的重要途徑.

 

 

有理數的混合運算(二)

 

教學目標

1.進一步熟練掌握有理數的混合運算,并會用運算律簡化運算;

2.培養(yǎng)學生的運算能力及綜合運用知識解決問題的能力.

教學重點和難點

重點:有理數的運算順序和運算律的運用.

難點:靈活運用運算律及符號的確定.

課堂教學過程設計

一、從學生原有認知結構提出問題

1.敘述有理數的運算順序.

2.三分鐘小測試

計算下列各題(只要求直接寫出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、講授新課

例1  當a=-3,b=-5,c=4時,求下列代數式的值:

(1)(a+b)2;  (2)a2-b2+c2

(3)(-a+b-c)2;  (4) a2+2ab+b2

解:(1)  (a+b)2

=(-3-5)2  (省略加號,是代數和)

=(-8)2=64;  (注意符號)

(2)  a2-b2+c2

=(-3)2-(-5)2+4(讓學生讀一讀)

=9-25+16  (注意-(-5)2的符號)

=0;

(3)  (-a+b-c)2

=[-(-3)+(-5)-4](注意符號)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此題是有理數的混合運算,有小括號可以先做小括號內的,

=1.02+6.25-12=-4.73.

在有理數混合運算中,先算乘方,再算乘除.乘除運算在一起時,統(tǒng)一化成乘法往往可以約分而使運算簡化;遇到帶分數通分時,可以寫

例4  已知a,b互為相反數,c,d互為倒數,x的絕對值等于2,試求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.

:由題意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

當x=2時,原式=x2-x-1=4-2-1=1;

當x=-2時,原式=x2-x-1=4-(-2)-1=5.

三、課堂練習

1.當a=-6,b=-4,c=10時,求下列代數式的值:

2.判斷下列各式是否成立(其中a是有理數,a≠0):

(1)a2+1>0;  (2)1-a2<0;

 

四、作業(yè)

1.根據下列條件分別求a3-b3與(a-b)·(a2+ab+b2)的值:

2.當a=-5.4,b=6,c=48,d=-1.2時,求下列代數式的值:

3.計算:

4.按要求列出算式,并求出結果.

(2)-64的絕對值的相反數與-2的平方的差.

5*.如果|ab-2|+(b-1)2=0,試求

課堂教學設計說明

1.課前三分鐘小測試中的題目,運算步驟不太多,著重考查學生運算法則、運算順序和運算符號,三分鐘內正確做完15題可算達標,否則在課后宜補充這一類訓練.

2.學生完成鞏固練習第1題以后,教師可引導學生發(fā)現(xiàn)(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使學生做題目的過程變成獲取新知識的重要途徑.

 

 



【有理數的混合運算 —— 初中數學第一冊教案】相關文章:

數學混合運算教案03-06

數學教案混合運算02-10

數學混合運算教案 15篇03-06

數學混合運算教案 (15篇)03-06

上冊數學混合運算教案01-27

混合運算數學教案08-19

數學小數加減混合運算教案02-11

混合運算教案08-26

數學混合運算教案 集合15篇03-06

小數混合運算數學教案02-07