天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>平行線的性質(zhì) 教學(xué)設(shè)計方案(二)

平行線的性質(zhì) 教學(xué)設(shè)計方案(二)

時間:2022-08-16 21:53:27 七年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

平行線的性質(zhì) 教學(xué)設(shè)計方案(二)


一、教學(xué)目標(biāo)

平行線的性質(zhì) 教學(xué)設(shè)計方案(二)

  1.理解平行線的性質(zhì)與平行線的判定是相反的問題,掌握平行線的性質(zhì).

  2.會用平行線的性質(zhì)進(jìn)行推理和計算.

  3.通過平行線性質(zhì)定理的推導(dǎo),培養(yǎng)學(xué)生觀察分析和進(jìn)行簡單的邏輯推理的能力.

  4.通過學(xué)習(xí)平行線的性質(zhì)與判定的聯(lián)系與區(qū)別,讓學(xué)生懂得事物是普遍聯(lián)系又相互區(qū)別的辯證唯物主義思想.

  二、學(xué)法引導(dǎo)

  1.教師教法:采用嘗試指導(dǎo)、引導(dǎo)發(fā)現(xiàn)法,充分發(fā)揮學(xué)生的主體作用,體現(xiàn)民主意識和開放意識.

  2.學(xué)生學(xué)法:在教師的指導(dǎo)下,積極思維,主動發(fā)現(xiàn),認(rèn)真研究.

  三、重點·難點解決辦法

  (一)重點

  平行線的性質(zhì)公理及平行線性質(zhì)定理的推導(dǎo).

 。ǘ╇y點

  平行線性質(zhì)與判定的區(qū)別及推導(dǎo)過程.

 。ㄈ┙鉀Q辦法

  1.通過教師創(chuàng)設(shè)情境,學(xué)生積極思維,解決重點.

  2.通過學(xué)生自己推理及教師指導(dǎo),解決難點.

  3.通過學(xué)生討論,歸納小結(jié).

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、三角板、自制投影片.

  六、師生互動活動設(shè)計

  1.通過引例創(chuàng)設(shè)情境,引入課題.

  2.通過教師指導(dǎo),學(xué)生積極思考,主動學(xué)習(xí),練習(xí)鞏固,完成新授.

  3.通過學(xué)生討論,完成課堂小結(jié).

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  掌握和運用平行線的性質(zhì),進(jìn)行推理和計算,進(jìn)一步培養(yǎng)學(xué)生的邏輯推理能力.

 。ǘ┱w感知

  以情境創(chuàng)設(shè)導(dǎo)入新課,以教師引導(dǎo),學(xué)生討論歸納新知,以變式練習(xí)鞏固新知.

 。ㄈ┙虒W(xué)過程

  創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  師:上節(jié)課我們學(xué)習(xí)了平行線的判定,回憶所學(xué)內(nèi)容看下面的問題(出示投影片1).

 1.如圖1,

 。1)∵ (已知),∴ (。

  (2)∵ (已知),∴ ( ).

 。3)∵ (已知),∴ (。

  2.如圖2,(1)已知 ,則 與 有什么關(guān)系?為什么?

 。2)已知 ,則 與 有什么關(guān)系?為什么?

 
圖2                圖3

  3.如圖3,一條公路兩次拐彎后,和原來的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?

  學(xué)生活動:學(xué)生口答第1、2題.

  師:第3題是一個實際問題,要給出 的度數(shù),就需要我們研究與判定相反的問題,即已知兩條直線平行,同位角、內(nèi)錯角、同旁內(nèi)角有什么關(guān)系,也就是平行線的性質(zhì).板書課題:

 。郯鍟2.6  平行線的性質(zhì)

  【教法說明】通過第1題,對上節(jié)所學(xué)判定定理進(jìn)行復(fù)習(xí),第2題為性質(zhì)定理的推導(dǎo)做好鋪墊,通過第3題的實際問題,引入新課,學(xué)生急于解決這個問題,需要學(xué)習(xí)新知識,從而激發(fā)學(xué)生學(xué)習(xí)新知識的積極性和主動性,同時讓學(xué)生感知到數(shù)學(xué)知識來源于生活,又服務(wù)于生活.

  探究新知,講授新課

  師:我們都知道平行線的畫法,請同學(xué)們畫出直線 的平行線 ,結(jié)合畫圖過程思考畫出的平行線,找一對同位角看它們的關(guān)系是怎樣的?

  學(xué)生活動:學(xué)生在練習(xí)本上畫圖并思考.

  學(xué)生畫圖的同時教師在黑板上畫出圖形(見圖4),當(dāng)同學(xué)們思考時,教師有意識地重復(fù)演示過程.

  【教法說明】讓同學(xué)們動手、動腦、觀察思考,使學(xué)生養(yǎng)成自己發(fā)現(xiàn)問題得出規(guī)律的習(xí)慣.

  學(xué)生活動:學(xué)生能夠在完成作圖后,迅速地答出:這對同位角相等.

  提出問題:是不是每一對同位角都相等呢?請同學(xué)們?nèi)萎嬕粭l直線 ,使它截平行線 與 ,得同位角 、 ,利用量角器量一下; 與 有什么關(guān)系?

  學(xué)生活動:學(xué)生按老師的要求畫出圖形,并進(jìn)行度量,回答出不論怎樣畫截線,所得的同位角都相等.

  根據(jù)學(xué)生的回答,教師肯定結(jié)論.

  師:兩條直線被第三條直線所截,如果這兩條直線平行,那么同位角相等.我們把平行線的這個性質(zhì)作為公理.

 。郯鍟輧蓷l平行線被第三條直線所截,同位角相等.

  簡單說成:兩直線平行,同位角相等.

  【教法說明】在教師提出問題的條件下,學(xué)生自己動手,實際操作,進(jìn)行度量,在有了大量感性認(rèn)識的基礎(chǔ)上,動腦分析總結(jié)出結(jié)論,不僅充分發(fā)揮學(xué)生主體作用,而且培養(yǎng)了學(xué)生分析問題的能力.

  提出問題:請同學(xué)們觀察圖5的圖形,兩條平行線被第三條直線所截,同位角是相等的,那么內(nèi)錯角、同旁內(nèi)角有什么關(guān)系呢?

  學(xué)生活動:學(xué)生觀察分析思考,會很容易地答出內(nèi)錯角相等,同分內(nèi)角互補.

  師:教師繼續(xù)提問,你能論述為什么內(nèi)錯角相等,同旁內(nèi)角互補嗎?同學(xué)們可以討論一下.

  學(xué)生活動:學(xué)生們思考,并相互討論后,有的同學(xué)舉手回答.

  【教法說明】在前面復(fù)習(xí)引入的第2題的基礎(chǔ)上,通過學(xué)生的觀察、分析、討論,此時學(xué)生已能夠進(jìn)行推理,在這里教師不必包辦代替,要充分調(diào)動學(xué)生的主動性和積極性,進(jìn)而培養(yǎng)學(xué)生分析問題的能力,在學(xué)生有成就感的同時也激勵了學(xué)生的學(xué)習(xí)興趣.

  教師根據(jù)學(xué)生回答,給予肯定或指正的同時板書.

  [板書]∵ (已知),∴ (兩條直線平行,同位角相等).

  ∵ (對項角相等),∴ (等量代換).

  師:由此我們又得到了平行線有怎樣的性質(zhì)呢?

  學(xué)生活動:同學(xué)們積極舉手回答問題.

  教師根據(jù)學(xué)生敘述,板書:

 。郯鍟輧蓷l平行經(jīng)被第三條直線所截,內(nèi)錯角相等.

  簡單說成:西直線平行,內(nèi)錯角相等.

  師:下面清同學(xué)們自己推導(dǎo)同分內(nèi)角是互補的,并歸納總結(jié)出平行線的第三條性質(zhì).請一名同學(xué)到黑板上板演,其他同學(xué)在練習(xí)本上完成.

  師生共同訂正推導(dǎo)過程和第三條性質(zhì),形成正確板書.

  [板書]∵ (已知),∴ (兩直線平行,同位角相等).

  ∵ (鄰補角定義),

  ∴ (等量代換).

  即:兩條平行線被第三條直線所截,同旁內(nèi)角互補.

  簡單說成,兩直線平行,同旁內(nèi)角互補.

  師:我們知道了平行線的性質(zhì),在今后我們經(jīng)常要用到它們?nèi)ソ鉀Q、論述一些問題,所需要知道的條件是兩條直線平行,才有同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,即它們的符號語言分別為:∵ (已知見圖6),∴ (兩直線平行,同位角相等).∵ (已知),∴ (兩直線平行,內(nèi)錯角相等).∵ (已知),∴ .(兩直線平行,同旁內(nèi)角互補)(板書在三條性質(zhì)對應(yīng)位置上.)

  嘗試反饋,鞏固練習(xí)

  師:我們知道了平行線的性質(zhì),看復(fù)習(xí)引入的第3題,誰能解決這個問題呢?

  學(xué)生活動:學(xué)生給出答案,并很快地說出理由.練習(xí)(出示投影片2):

  如圖7,已知平行線 、 被直線 所截:


圖7

 。1)從 ,可以知道 是多少度?為什么?(2)從 ,可以知道 是多少度?為什么?(3)從 ,可以知道 是多少度,為什么?

  【教法說明】練習(xí)目的是鞏固平行線的三條性質(zhì).

  變式訓(xùn)練,培養(yǎng)能力

  完成練習(xí)(出示投影片3).

  如圖8是梯形有上底的一部分,已知量得 , ,梯形另外兩個角各是多少度?


圖8

  學(xué)生活動:在教師不給任何提示的情況下,讓學(xué)生思考,可以相互之間討論并試著在練習(xí)本上寫出解題過程.

  【教法說明】學(xué)生在小學(xué)階段對于梯形的兩底平行就已熟知,所以學(xué)生能夠想到利用平行線的同旁內(nèi)角互補來找 和 的大。@里學(xué)生能夠自己解題,教師避免包辦代替,可以培養(yǎng)學(xué)生積極主動的學(xué)習(xí)意識,學(xué)會思考問題,分析問題.學(xué)生板演教師指正,在幾何里我們每一步結(jié)論的得出都要有理有據(jù),規(guī)范學(xué)生的解題思路和格式,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,修改學(xué)生的板演過程,可形成下面的板書.

 。郯鍟萁猓骸 (梯形定義),∴ , (兩直線平行,同旁內(nèi)角互補).∴ .∴ .

  變式練習(xí)(出示投影片4)

  1.如圖9,已知直線 經(jīng)過點 , , , .

 。1) 等于多少度?為什么?

 。2) 等于多少度?為什么?

  (3) 、 各等于多少度?

  2.如圖10, 、 、 、 在一條直線上, .

  (1) 時, 、 各等于多少度?為什么?

 。2) 時, 、 各等于多少度?為什么?

  學(xué)生活動:學(xué)生獨立完成,把理由寫成推理格式.

  【教學(xué)說明】題目中的為什么,可以用語言敘述,為了培養(yǎng)學(xué)生的邏輯推理能力,最好用推理格式說明.另外第2題在求得一個角后,另一個角的解法不惟一.對學(xué)生中出現(xiàn)的不同解法給予肯定,若學(xué)生未想到用鄰補角求解,教師應(yīng)啟發(fā)誘導(dǎo)學(xué)生,從而培養(yǎng)學(xué)生的解題能力.

 。ㄋ模┛偨Y(jié)、擴展

  (出示投影片1第1題和投影片5)完成并比較.

  如圖11,

  (1)∵ (已知),

  ∴ (  。

 。2)∵ (已知),

  ∴ (  。

 。3)∵ (已知),

  ∴ (  。

  學(xué)生活動:學(xué)生回答上述題目的同時,進(jìn)行觀察比較.

  師:它們有什么不同,同學(xué)們可以相互討論一下.

 。ǔ鍪就队6)

  

  學(xué)生活動:學(xué)生積極討論,并能夠說出前面是平行線的判定,后面是平行線的性質(zhì),由角的關(guān)系得到兩條直線平行的結(jié)論是平行線的判定,反過來,由已知直線平行,得到角相等或互補的結(jié)論是平行線的性質(zhì).

  【教法說明】通過有形的具體實例,使學(xué)生在有充足的感性認(rèn)識的基礎(chǔ)上上升到理性認(rèn)識,總結(jié)出平行線性質(zhì)與判定的不同.

  鞏固練習(xí)(出示投影片7)

  1.如圖12,已知 是 上的一點, 是 上的一點, , , .(1) 和 平行嗎?為什么?


圖12

  (2) 是多少度?為什么?

  學(xué)生活動:學(xué)生思考、口答.

  【教法說明】這個題目是為了鞏固學(xué)生對平行線性質(zhì)與判定的聯(lián)系與區(qū)別的掌握.知道什么條件時用判定,什么條件時用性質(zhì)、真正理解、掌握并應(yīng)用于解決問題.

  八、布置作業(yè)

 。ㄒ唬┍刈鲱}

  課本第99~100頁A組第11、12題.

 。ǘ┻x做題

  課本第101頁B組第2、3題.

  作業(yè)答案

  A組11.(1)兩直線平行,內(nèi)錯角相等.

  (2)同位角相等,兩直線平行.兩直線平行,同旁內(nèi)角互補.

 。3)兩直線平行,同位角相等.對頂角相等.

  12.(1)∵ (已知),∴ (內(nèi)錯角相等,兩直線平行).

 。2)∵ (已知),∴ (兩直線平行,同位角相等), (兩直線平行,同位角相等).

  B組2.∵ (已知),∴ (兩直線平行,同位角相等), (兩直線平行,內(nèi)錯角相等).

  ∵ (已知),∴ (兩直線平行,同位角相等), (同上).又∵ (已證),∴ .∴ .又∵ (平角定義),∴ .

  3.平行線的判定與平行線的性質(zhì),它們的題設(shè)和結(jié)論正好相反.



【平行線的性質(zhì) 教學(xué)設(shè)計方案(二)】相關(guān)文章:

平行線的性質(zhì)教學(xué)反思04-04

平行線及平行公理 教學(xué)設(shè)計方案(二)05-01

初中數(shù)學(xué)教學(xué)案例——探索平行線的性質(zhì)08-16

《平行線的性質(zhì)》數(shù)學(xué)教案02-15

初中數(shù)學(xué)平行線的性質(zhì)教案12-29

平行線及平行公理 教學(xué)設(shè)計方案(一)05-01

七年級數(shù)學(xué)《平行線的性質(zhì)》教學(xué)反思03-20

畫平行線的教學(xué)反思08-18

平行線的判定教學(xué)反思03-20

相交線與平行線教學(xué)反思03-09